1887

Abstract

A novel endophytic actinomycete with antifungal activity, designated strain NEAU-JXY5, was isolated from the root of (Bak.) Ching. Strain NEAU-JXY5 showed closest 16S rRNA gene sequence similarity to GUI2 (99.31 %), and phylogenetically clustered with GUI43 (99.24 %), '' NEAU-gq11 (99.19 %), ' NEAU-gq9 (99.12 %), Lupac 09 (98.97 %), GUI63 (98.96 %), '' NEAU-GRX11 (98.91 %), DS3010 (98.77 %), CR38 (98.76 %), 2–19(6) (98.71 %), Lupac 14N (98.69 %), GUI23 (98.69 %), NEAU-zh8 (98.57 %) and NEAU-P5 (98.37 %). Phylogenetic analysis based on B gene sequences also indicated that the isolate clustered with the above strains except NEAU-zh8. A combination of DNA–DNA hybridization results and some phenotypic characteristics indicated that the strain could be readily distinguished from these closest phylogenetic relatives. Therefore, it is concluded that strain NEAU-JXY5 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is NEAU-JXY5 (=CGMCC 4.7347=DSM 103125).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001614
2017-02-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/2/268.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001614&mimeType=html&fmt=ahah

References

  1. Ørskov J. Investigations into the Morphology of the Ray Fungi Copenhagen: Levin and Munksgaard; 1923
    [Google Scholar]
  2. Li L, Hong K. Micromonospora ovatispora sp. nov. isolated from mangrove soil. Int J Syst Evol Microbiol 2016; 66:889–893 [View Article]
    [Google Scholar]
  3. Xiang W, Yu C, Liu C, Zhao J, Yang L et al. Micromonospora polyrhachis sp. nov., an actinomycete isolated from edible Chinese black ant (Polyrhachis vicina Roger). Int J Syst Evol Microbiol 2014; 64:495–500 [View Article][PubMed]
    [Google Scholar]
  4. Phongsopitanun W, Kudo T, Mori M, Shiomi K, Pittayakhajonwut P et al. Micromonospora fluostatini sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2015; 65:4417–4423 [View Article][PubMed]
    [Google Scholar]
  5. Kittiwongwattana C, Thanaboripat D, Laosinwattana C, Koohakan P, Thawai C et al. Micromonospora oryzae sp. nov., isolated from roots of upland rice. Int J Syst Evol Microbiol 2015; 65:3818–3823 [View Article]
    [Google Scholar]
  6. Song H, Xu R, Guo Z. Identification and characterization of a methionine γ-lyase in the calicheamicin biosynthetic cluster of Micromonospora echinospora. Chembiochem 2015; 16:100–109 [View Article][PubMed]
    [Google Scholar]
  7. Ni X, Sun Z, Gu Y, Cui H, Xia H. Assembly of a novel biosynthetic pathway for gentamicin B production in Micromonospora echinospora. Microb Cell Fact 2016; 15:1–9 [View Article][PubMed]
    [Google Scholar]
  8. Rodríguez E, Peirú S, Carney JR, Gramajo H. In vivo characterization of the dTDP-D-desosamine pathway of the megalomicin gene cluster from Micromonospora megalomicea. Microbiology 2006; 152:667–673 [View Article][PubMed]
    [Google Scholar]
  9. Gurovic MSV, Müller S, Domin N, Seccareccia I, Nietzsche S et al. Micromonospora schwarzwaldensis sp. nov., a producer of telomycin, isolated from soil. Int J Syst Evol Microbiol 2013; 63:3812–3817 [View Article][PubMed]
    [Google Scholar]
  10. Wagman GH, Waitz JA, Marquez J, Murawaski A, Oden EM et al. A new Micromonospora-produced macrolide antibiotic, rosamicin. J Antibiot 1972; 25:641–646 [View Article][PubMed]
    [Google Scholar]
  11. Igarashi Y, Trujillo ME, Martínez-Molina E, Miyanaga S, Obata T et al. Antitumor anthraquinones from an endophytic actinomycete Micromonospora lupini sp. nov. Bioorg Med Chem Lett 2007; 17:3702–3705 [View Article][PubMed]
    [Google Scholar]
  12. Igarashi Y, Ogura H, Furihata K, Oku N, Indananda C et al. Maklamicin, an antibacterial polyketide from an endophytic Micromonospora sp. J Nat Prod 2011; 74:670–674 [View Article]
    [Google Scholar]
  13. Conn VM, Walker AR, Franco CMM. Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Mol Plant-Microbe Interact 2008; 21:208–218 [View Article]
    [Google Scholar]
  14. Wang X, Zhao J, Liu C, Wang J, Shen Y et al. Nonomuraea solani sp. nov., an actinomycete isolated from eggplant root (Solanum melongena L.). Int J Syst Evol Microbiol 2013; 63:2418–2423 [View Article][PubMed]
    [Google Scholar]
  15. Atlas RM. Handbook of Microbiological Media, 4th ed. CRC Press; 2010 p 719 [CrossRef]
    [Google Scholar]
  16. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  17. Trujillo ME, Fernández-Molinero C, Velázquez E, Kroppenstedt RM, Schumann P et al. Micromonospora mirobrigensis sp. nov. Int J Syst Evol Microbiol 2005; 55:877–880 [View Article][PubMed]
    [Google Scholar]
  18. Trujillo ME, Kroppenstedt RM, Fernández-Molinero C, Schumann P, Martínez-Molina E. Micromonospora lupini sp. nov. and Micromonospora saelicesensis sp. nov., isolated from root nodules of Lupinus angustifolius. Int J Syst Evol Microbiol 2007; 57:2799–2804 [View Article][PubMed]
    [Google Scholar]
  19. Jones KL. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 1949; 57:141–145[PubMed]
    [Google Scholar]
  20. Kelly KL. Inter-Society Color Council - National Bureau of Standards Color Name Charts Illustrated with Centroid Colors. Washington, DC: US Government Printing Office; 1964
  21. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974; 24:54–63 [View Article]
    [Google Scholar]
  22. Yokota A, Tamura T, Hasegawa T, Huang LH. Catenuloplanes japonicus gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 1993; 43:805–812 [View Article]
    [Google Scholar]
  23. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  24. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
  25. Jia F, Liu C, Wang X, Zhao J, Liu Q et al. Wangella harbinensis gen. nov., sp. nov., a new member of the family Micromonosporaceae. Antonie van Leeuwenhoek 2013; 103:399–408 [View Article][PubMed]
    [Google Scholar]
  26. Mckerrow J, Vagg S, Mckinney T, Seviour EM, Maszenan AM et al. A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 2000; 30:178–182 [View Article][PubMed]
    [Google Scholar]
  27. Yu C, Liu C, Wang X, Zhao J, Yang L et al. Streptomyces polyrhachii sp. nov., a novel actinomycete isolated from an edible Chinese black ant (Polyrhachis vicina Roger). Antonie van Leeuwenhoek 2013; 104:1013–1019 [View Article][PubMed]
    [Google Scholar]
  28. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. In Dietz A, Thayer DW. (editors) Actinomycete Taxonomy Special Publication vol. 6 Arlington: Society of Industrial Microbiology; 1980 pp 227–291
    [Google Scholar]
  29. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985 pp 267–284
    [Google Scholar]
  30. Wu C, Lu X, Qin M, Wang Y, Ruan J. Analysis of menaquinone compound in microbial cells by HPLC. Microbiology [English translation of Microbiology (Beijing)] 1989; 16:176–178
    [Google Scholar]
  31. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  32. Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M. Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr A 1980; 188:221–233 [View Article]
    [Google Scholar]
  33. Gao R, Liu C, Zhao J, Jia F, Yu C et al. Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie van Leeuwenhoek 2014; 105:307–315 [View Article][PubMed]
    [Google Scholar]
  34. Xiang W, Liu C, Wang X, du J, Xi L et al. Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 2011; 61:1165–1169 [View Article][PubMed]
    [Google Scholar]
  35. Lee YK, Kim HW, Liu CL, Lee HK. A simple method for DNA extraction from marine bacteria that produce extracellular materials. J Microbiol Methods 2003; 52:245–250 [View Article][PubMed]
    [Google Scholar]
  36. Loqman S, Barka EA, Clément C, Ouhdouch Y. Antagonistic actinomycetes from Moroccan soil to control the grapevine gray mold. World J Microbiol Biotechnol 2009; 25:81–91 [View Article]
    [Google Scholar]
  37. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  38. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  39. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  40. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–789 [View Article]
    [Google Scholar]
  41. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  42. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  43. Garcia LC, Martínez-Molina E, Trujillo ME. Micromonospora pisi sp. nov., isolated from root nodules of Pisum sativum. Int J Syst Evol Microbiol 2010; 60:331–337 [View Article][PubMed]
    [Google Scholar]
  44. Mandel M, Marmur J. Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 1968; 12B:195–206 [CrossRef]
    [Google Scholar]
  45. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142 [View Article][PubMed]
    [Google Scholar]
  46. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4:184–192 [View Article][PubMed]
    [Google Scholar]
  47. Bai L, Liu C, Guo L, Piao C, Li Z et al. Streptomyces formicae sp. nov., a novel actinomycete isolated from the head of Camponotus japonicus Mayr. Antonie van Leeuwenhoek 2016; 109:253–261 [View Article][PubMed]
    [Google Scholar]
  48. Genilloud O. Genus I Micromonospora. In Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K-I. et al (editors) Bergey's Manual of Systematic Bacteriology, 2nd ed. vol. 5. The Actinobacteria New York: Springer; 2012 pp 1039–1057
    [Google Scholar]
  49. Lechevalier MP, de Bievre C, Lechevalier H. Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 1977; 5:249–260 [View Article]
    [Google Scholar]
  50. Carro L, Riesco R, Spröer C, Trujillo ME. Micromonospora luteifusca sp. nov. isolated from cultivated Pisum sativum. Syst Appl Microbiol 2016; 39:237–242 [View Article][PubMed]
    [Google Scholar]
  51. Carro L, Riesco R, Sproer C, Trujillo ME. Three new species of Micromonospora isolated from Pisum sativum nodules: Micromonospora ureilytica sp. nov., Micromonospora noduli sp. nov., and Micromonospora vinacea sp. nov. Int J Syst Evol Microbiol 2016; 66:3509–3514 [CrossRef]
    [Google Scholar]
  52. Zhao J, Guo L, Liu C, Zhang Y, Guan X et al. Micromonospora lycii sp. nov., a novel endophytic actinomycete isolated from wolfberry root (Lycium chinense Mill). J Antibiot 2016; 69:153–158 [View Article][PubMed]
    [Google Scholar]
  53. Shen Y, Zhang Y, Liu C, Wang X, Zhao J et al. Micromonospora zeae sp. nov., a novel endophytic actinomycete isolated from corn root (Zea mays L.). J Antibiot 2014; 67:739–743 [View Article][PubMed]
    [Google Scholar]
  54. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International ommittee on ystematic acteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001614
Loading
/content/journal/ijsem/10.1099/ijsem.0.001614
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error