1887

Abstract

A yellow-pigmented bacterial strain, designated M1-33108, was isolated from the till of high Arctic glacier Midtre Lovénbreen near Ny-Ålesund, in the West Svalbard Archipelago, Norway. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain M1-33108 belonged to the genus and its closest neighbour was R9-86 with 96.12 % 16S rRNA gene sequence similarity. Cells of strain M1-33108 were Gram-reaction-negative, aerobic, non-spore-forming, rod-shaped bacteria that lacked motility. Cells contained iso-C G, iso-C, iso-C 3-OH, C and summed feature 3 (comprising Cω7 and/or Cω6) as its major cellular fatty acids and menaquinone-7 as the sole respiratory quinone. The polar lipid profile of strain M1-33108 consisted of phosphatidylethanolamine, two unknown aminophospholipids, eight unknown aminolipids, an unknown glycolipid and three unknown polar lipids. The DNA G+C content was 45.0 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain M1-33108 is considered to represent a novel species in the genus , for which the name sp. nov. is proposed. The type strain is M1-33108 (=CCTCC AB 2016103=KCTC 52448).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001689
2017-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/4/868.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001689&mimeType=html&fmt=ahah

References

  1. Xie CH, Yokota A. Reclassification of [Flavobacterium] ferrugineum as Terrimonas ferruginea gen. nov., comb. nov., and description of Terrimonas lutea sp. nov., isolated from soil. Int J Syst Evol Microbiol 2006; 56:1117–1121 [View Article][PubMed]
    [Google Scholar]
  2. Sheu SY, Cho NT, Arun AB, Chen WM. Terrimonas aquatica sp. nov., isolated from a freshwater spring. Int J Syst Evol Microbiol 2010; 60:2705–2709 [View Article][PubMed]
    [Google Scholar]
  3. Zhang J, Gu T, Zhou Y, He J, Zheng LQ et al. Terrimonas rubra sp. nov., isolated from a polluted farmland soil and emended description of the genus Terrimonas. Int J Syst Evol Microbiol 2012; 62:2593–2597 [View Article][PubMed]
    [Google Scholar]
  4. Jin D, Wang P, Bai Z, Jin B, Yu Z et al. Terrimonas pekingensis sp. nov., isolated from bulking sludge, and emended descriptions of the genus Terrimonas, Terrimonas ferruginea, Terrimonas lutea and Terrimonas aquatica. Int J Syst Evol Microbiol 2013; 63:1658–1664 [View Article][PubMed]
    [Google Scholar]
  5. Jiang F, Qiu X, Chang X, Qu Z, Ren L et al. Terrimonas arctica sp. nov., isolated from Arctic tundra soil. Int J Syst Evol Microbiol 2014; 64:3798–3803 [View Article][PubMed]
    [Google Scholar]
  6. Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual, Rv. ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2001
    [Google Scholar]
  7. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp. 115–147
    [Google Scholar]
  8. Lin YC, Uemori K, de Briel DA, Arunpairojana V, Yokota A. Zimmermannella helvola gen. nov., sp. nov., Zimmermannella alba sp. nov., Zimmermannella bifida sp. nov., Zimmermannella faecalis sp. nov. and Leucobacter albus sp. nov., novel members of the family Microbacteriaceae. Int J Syst Evol Microbiol 2004; 54:1669–1676 [View Article][PubMed]
    [Google Scholar]
  9. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  10. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  11. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  12. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  13. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  14. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  15. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  16. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  17. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  18. Doetsch RN. Determinative methods of light microscopy. In Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA. et al. (editors) Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981 pp. 21–33
    [Google Scholar]
  19. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50:1861–1868 [View Article][PubMed]
    [Google Scholar]
  20. Chung YC, Kobayashi T, Kanai H, Akiba T, Kudo T. Purification and properties of extracellular amylase from the hyperthermophilic archaeon Thermococcus profundus DT5432. Appl Environ Microbiol 1995; 61:1502–1506[PubMed]
    [Google Scholar]
  21. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703 [View Article][PubMed]
    [Google Scholar]
  22. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P. (editor) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  23. Weeks OB. Preliminary studies of the pigments of Flavobacterium breve NCTC 11099 and Flavobacterium odoratum NCTC 11036. In Reichenbach H, Weeks OB. (editors) The Flavobacterium-Cytophaga Group Weinheim: Gesellschaft für Biotechnologische Forschung; 1981 pp. 108–114
    [Google Scholar]
  24. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993 [CrossRef]
    [Google Scholar]
  25. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966; 45:493–496[PubMed]
    [Google Scholar]
  26. Moore DD, Dowhan D. Preparation and analysis of DNA. In Ausubel FW, Brent R, Kingston RE, Moore DD, Seidman JG. et al. (editors) Current Protocols in Molecular Biology New York: Wiley; 1995 pp. 2–11
    [Google Scholar]
  27. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  28. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  29. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  30. Xie CH, Yokota A. Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 2003; 49:345–349 [View Article][PubMed]
    [Google Scholar]
  31. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  32. Reddy GSN, Garcia-Pichel F. Dyadobacter crusticola sp. nov., from biological soil crusts in the Colorado Plateau, USA, and an emended description of the genus Dyadobacter Chelius and Triplett 2000. Int J Syst Evol Microbiol 2005; 55:1295–1299 [View Article][PubMed]
    [Google Scholar]
  33. Chelius MK, Triplett EW. Dyadobacter fermentans gen. nov., sp. nov., a novel Gram-negative bacterium isolated from surface-sterilized Zea mays stems. Int J Syst Evol Microbiol 2000; 50:751–758 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001689
Loading
/content/journal/ijsem/10.1099/ijsem.0.001689
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error