- Home
- Publications
- International Journal of Systematic and Evolutionary Microbiology
- Volume 67, Issue 4
- Article

f Lysobacter humi sp. nov., isolated from soil
- Authors: Dongwook Lee1 , Jun Hyeong Jang1 , Seho Cha1 , Taegun Seo1
-
- VIEW AFFILIATIONS
-
1 Department of Life Science, Dongguk University – Seoul, Goyang 10326, Republic of Korea
- *Correspondence: Taegun Seo, [email protected]
- First Published Online: 05 May 2017, International Journal of Systematic and Evolutionary Microbiology 67: 951-955, doi: 10.1099/ijsem.0.001722
- Subject: New Taxa - Other Bacteria
- Received:
- Accepted:
- Cover date:




Lysobacter humi sp. nov., isolated from soil, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/ijsem/67/4/951_ijsem001722-1.gif
-
A yellow-pigmented and strictly aerobic bacterial strain, designated FJY8T, was isolated from the soil of Goyang, South Korea. The cells of FJY8T were Gram-reaction-negative, non-motile rods. Colonies were circular, convex and transparent. Strain FJY8T grew optimally at 30 °C, with 0 % (w/v) NaCl and at pH 8. Phylogenetic analysis of the 16S rRNA gene sequence of FJY8T revealed a clear affiliation of this bacterium to the family Lysobacteraceae , and it was related to members of the genus Lysobacter , with Lysobacter xinjiangensis KCTC 22558T being its closest relative (98.7 % sequence similarity). The DNA G+C content was 68.0±0.4 mol%. Diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol were identified as the major polar lipids, and an unidentified phospholipid and two unidentified aminophospholipids were also detected as the minor polar lipids. The major fatty acids were iso-C16 : 0, summed feature 9 (iso-C17 : 1ω9c and/or C16 : 0 10-methyl) and iso-C15 : 0. Only ubiquinone-8 (Q-8) was detected as the isoprenoid quinone. DNA–DNA hybridization values of strain FJY8T with Lysobacter xinjiangensis RCML-52T and Lysobacter mobilis 9NM-14T were 55.8±2.0 and 45.2±4.8 %, respectively. On the basis of DNA–DNA hybridization, phylogenetic distinctiveness, and some physiological and biochemical tests, strain FJY8T (=KCTC 42810T=JCM 31019T) represents a novel species of the genus Lysobacter , for which the name Lysobacter humi sp. nov. is proposed.
-
The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain FJY8T is KR698371.
-
One supplementary table and two supplementary figures are available with the online Supplementary Material.
- Keyword(s): Lysobacter, taxonomy, DNA-DNA relatedness
© 2017 IUMS | Published by the Microbiology Society
-
1. Christensen P, Cook FD. Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int J Syst Evol Microbiol 1978;28:367–393 [CrossRef]
-
2. Miess H, van Trappen S, Cleenwerck I, de Vos P, Gross H. Reclassification of Pseudomonas sp. PB-6250T as Lysobacter firmicutimachus sp. nov. Int J Syst Evol Microbiol 2016;66:4162–4166 [CrossRef][PubMed]
-
3. Xie B, Li T, Lin X, Wang CJ, Chen YJ et al. Lysobacter erysipheiresistens sp. nov., an antagonist of powdery mildew, isolated from tobacco-cultivated soil. Int J Syst Evol Microbiol 2016;66:4016–4021 [CrossRef][PubMed]
-
4. Siddiqi MZ, Im WT. Lysobacter hankyongensis sp. nov., isolated from activated sludge and Lysobacter sediminicola sp. nov., isolated from freshwater sediment. Int J Syst Evol Microbiol 2016;66:212–218 [CrossRef][PubMed]
-
5. Singh H, Won K, du J, Yang JE, Akter S et al. Lysobacter agri sp. nov., a bacterium isolated from soil. Antonie van Leeuwenhoek 2015;108:553–561 [CrossRef][PubMed]
-
6. Oh KH, Kang SJ, Jung YT, Oh TK, Yoon JH. Lysobacter dokdonensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2011;61:1089–1093 [CrossRef][PubMed]
-
7. Srinivasan S, Kim MK, Sathiyaraj G, Kim HB, Kim YJ et al. Lysobacter soli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2010;60:1543–1547 [CrossRef][PubMed]
-
8. Wang Y, Dai J, Zhang L, Luo X, Li Y et al. Lysobacter ximonensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2009;59:786–789 [CrossRef][PubMed]
-
9. Weon HY, Kim BY, Kim MK, Yoo SH, Kwon SW et al. Lysobacter niabensis sp. nov. and Lysobacter niastensis sp. nov., isolated from greenhouse soils in Korea. Int J Syst Evol Microbiol 2007;57:548–551 [CrossRef][PubMed]
-
10. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991;173:697–703 [CrossRef][PubMed]
-
11. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389–3402[PubMed][CrossRef]
-
12. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
-
13. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef][PubMed]
-
14. Hall T. BioEdit. Biological sequence alignment editor for Win 95/98/NT/2K/XP Carlsbad, CA: Ibis Therapeutics; 1997
-
15. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
-
16. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
-
17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
-
18. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
-
19. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef]
-
20. Fitch WM. Toward defining the course of evolution: minimum change for a specified tree topology. Syst Zool 1971;20:406–416 [CrossRef]
-
21. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982;44:992–993[PubMed]
-
22. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
-
23. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–205[CrossRef]
-
24. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Evol Microbiol 1988;38:358–361 [CrossRef]
-
25. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996;42:457–469 [CrossRef]
-
26. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981;45:316–354[PubMed]
-
27. Zhang L, Bai J, Wang Y, Wu GL, Dai J et al. Lysobacter korlensis sp. nov. and Lysobacter bugurensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2011;61:2259–2265 [CrossRef][PubMed]
-
28. Liu M, Liu Y, Wang Y, Luo X, Dai J et al. Lysobacter xinjiangensis sp. nov., a moderately thermotolerant and alkalitolerant bacterium isolated from a gamma-irradiated sand soil sample. Int J Syst Evol Microbiol 2011;61:433–437 [CrossRef][PubMed]
-
29. Ausubel FM, Brent R, Kingston R. E, Moore D. D, Seidman J. et al. (editors) Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, 3rd ed. New York: Wiley; 1995
-
30. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:133–142 [CrossRef][PubMed]
-
31. Gillis M, Ley JD, Cleene MD. The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur J Biochem 1970;12:143–153 [CrossRef]
-
32. Loveland-Curtze J, Miteva VI, Brenchley JE, Vanya IM, Jean EB. Evaluation of a new fluorimetric DNA–DNA hybridization method. Can J Microbiol 2011;57:250–255 [CrossRef][PubMed]
-
33. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002;4:770–773[PubMed][CrossRef]
-
34. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA–DNA reassociation and 16s rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994;44:846–849 [CrossRef]
-
35. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464[CrossRef]

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/ijsem/10.1099/ijsem.0.001722dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/ijsem/10.1099/ijsem.0.001722dcterms_title,dcterms_subject-pub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....