- Home
- Publications
- International Journal of Systematic and Evolutionary Microbiology
- Volume 67, Issue 5
- Article

f Nonlabens aestuariivivens sp. nov., isolated from a tidal flat
- Authors: Sooyeon Park1 , Min-Ji Ha1 , Sun Young Yoon1 , Yong-Taek Jung1,2 , Jung-Hoon Yoon1
-
- VIEW AFFILIATIONS
-
1 1Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea 2 2University of Science and Technology (UST), 113 Gwahak-ro, Yuseong-gu, Daejeon, Republic of Korea
- *Correspondence: Jung-Hoon Yoon, [email protected]
- First Published Online: 25 May 2017, International Journal of Systematic and Evolutionary Microbiology 67: 1535-1539, doi: 10.1099/ijsem.0.001750
- Subject: New Taxa - Bacteroidetes
- Received:
- Accepted:
- Cover date:




Nonlabens aestuariivivens sp. nov., isolated from a tidal flat, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/ijsem/67/5/1535_ijsem001750-1.gif
-
A Gram-stain-negative, non-flagellated, non-gliding, aerobic and rod-shaped bacterium, designated strain OITF-31T, was isolated from a tidal flat in Oido, an island of South Korea, and subjected to a polyphasic taxonomic study. Strain OITF-31T grew optimally at 30 °C, at pH 7.0–8.0 and in the presence of 1.0–2.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences revealed that strain OITF-31T belonged to the genus Nonlabens , clustering with the type strains of Nonlabens dokdonensis and Nonlabens xylanidelens , sharing 98.1 % sequence similarity with each. Strain OITF-31T exhibited 16S rRNA gene sequence similarities of 93.9–95.8 % to the type strains of other Nonlabens species and less than of 91.8 % to the type strains of other recognized species. Strain OITF-31T contained MK-6 as the predominant menaquinone and iso-C17 : 0 3-OH and iso-C15 : 0 as the major fatty acids. The major polar lipids detected in strain OITF-31T were phosphatidylethanolamine, six unidentified lipids and two unidentified aminolipids. The DNA G+C content of strain OITF-31T was 38.1 mol% and its mean DNA–DNA relatedness values with the type strains of N. dokdonensis and N. xylanidelens were 24 and 19 %, respectively. Differential phenotypic properties, together with its phylogenetic and genetic distinctiveness, revealed that strain OITF-31T is separated from recognized species of the genus Nonlabens . On the basis of the data presented, strain OITF-31T is considered to represent a novel species of the genus Nonlabens , for which the name Nonlabens aestuariivivens sp. nov. is proposed. The type strain is OITF-31T (=KCTC 52502T=NBRC 112459T).
-
The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain OITF- 31T is KX870191.
-
Three supplementary figures are available with the online Supplementary Material.
© 2017 IUMS | Published by the Microbiology Society
-
1. Bernardet J-F. Family I. Flavobacteriaceae Reichenbach 1992. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ. et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 4 New York: Springer; 2011; pp.106–111
-
2. Lau SCK, Tsoi MMY, Li X, Plakhotnikova I, Dobretsov S et al. Nonlabens tegetincola gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from a microbial mat in a subtropical estuary. Int J Syst Evol Microbiol 2005;55:2279–2283 [CrossRef][PubMed]
-
3. O'Sullivan LA, Rinna J, Humphreys G, Weightman AJ, Fry JC. Culturable phylogenetic diversity of the phylum 'Bacteroidetes' from river epilithon and coastal water and description of novel members of the family Flavobacteriaceae: Epilithonimonas tenax gen. nov., sp. nov. and Persicivirga xylanidelens gen. nov., sp. nov. Int J Syst Evol Microbiol 2006;56:169–180 [CrossRef][PubMed]
-
4. Khan ST, Nakagawa Y, Harayama S. Sandarakinotalea sediminis gen. nov., sp. nov., a novel member of the family Flavobacteriaceae. Int J Syst Evol Microbiol 2006;56:959–963 [CrossRef][PubMed]
-
5. Lau SCK, Tsoi MMY, Li X, Plakhotnikova I, Dobretsov S et al. Stenothermobacter spongiae gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from a marine sponge in the bahamas, and emended description of Nonlabens tegetincola. Int J Syst Evol Microbiol 2006;56:181–185 [CrossRef][PubMed]
-
6. Yi H, Chun J. Unification of the genera Nonlabens, Persicivirga, Sandarakinotalea and Stenothermobacter into a single emended genus, Nonlabens, and description of Nonlabens agnitus sp. nov. Syst Appl Microbiol 2012;35:150–155 [CrossRef][PubMed]
-
7. Parte AC. LPSN – list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014;42:D613–D616 [CrossRef][PubMed]
-
8. Yoon JH, Kang SJ, Lee CH, Oh TK. Donghaeana dokdonensis gen. nov., sp. nov., isolated from sea water. Int J Syst Evol Microbiol 2006;56:187–191 [CrossRef][PubMed]
-
9. Barbeyron T, Lerat Y, Sassi JF, Le Panse S, Helbert W et al. Persicivirga ulvanivorans sp. nov., a marine member of the family Flavobacteriaceae that degrades ulvan from green algae. Int J Syst Evol Microbiol 2011;61:1899–1905 [CrossRef][PubMed]
-
10. Park S, Kang CH, Yoon JH. Nonlabens arenilitoris sp. nov., a member of the family Flavobacteriaceae isolated from seashore sand. Antonie van Leeuwenhoek 2013;103:1125–1132 [CrossRef][PubMed]
-
11. Kwon YM, Yang SH, Kwon KK, Kim SJ. Nonlabens antarcticus sp. nov., a psychrophilic bacterium isolated from glacier ice, and emended descriptions of Nonlabens marinus Park et al. 2012 and Nonlabens agnitus Yi and Chun 2012. Int J Syst Evol Microbiol 2014;64:400–405 [CrossRef][PubMed]
-
12. Park S, Won SM, Kim H, Park DS, Yoon JH. Aestuariivita boseongensis gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014;64:2969–2974 [CrossRef][PubMed]
-
13. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000;50:1861–1868 [CrossRef][PubMed]
-
14. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987;19:1–67[CrossRef]
-
15. Barrow G I, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993;[CrossRef]
-
16. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001;51:1997–2006 [CrossRef][PubMed]
-
17. Reichenbach H. The order Cytophagales. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH. et al (editors) The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed. New York: Springer; 1992; pp.3631–3675
-
18. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52:1049–1070 [CrossRef][PubMed]
-
19. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963;85:1183–1184[PubMed]
-
20. Yoon J-H, Kim H, Kim S-B, Kim H-J, Kim WY et al. Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 1996;46:502–505 [CrossRef]
-
21. Yoon JH, Lee ST, Park YH. Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int J Syst Bacteriol 1998;48:187–194 [CrossRef][PubMed]
-
22. Yoon JH, Kang KH, Park YH. Psychrobacter jeotgali sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 2003;53:449–454 [CrossRef][PubMed]
-
23. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
-
24. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207[CrossRef]
-
25. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI. Inc; 1990
-
26. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
-
27. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons; 1994; pp.121–161
-
28. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
-
29. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463–464[CrossRef]
-
30. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 1994;44:846–849 [CrossRef]

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/ijsem/10.1099/ijsem.0.001750dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/ijsem/10.1099/ijsem.0.001750dcterms_title,dcterms_subject-pub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....