1887

Abstract

Two slightly yellowish-pigmented, oxidase-negative, rod-shaped and Gram-stain-negative bacterial strains (30TX1 and DL20), isolated from and , respectively, during soil sampling in Vietnam were studied using a polyphasic taxonomic approach. Strain 30TX1 showed highest 16S rRNA gene sequence similarity to the type strain of (98.9 %) and strain DL20 to that of (98.7 %). Sequence similarities to all other species were lower (<98.4 %). The two strains shared 98 % 16S rRNA gene sequence similarity. Multilocus sequence analysis (MLSA) based on concatenated partial , , , and gene sequences showed a clear distinction of strains 30TX1 and DL20 among each other and to the closest related type strains. DNA–DNA hybridizations between strain DL20 and the type strain of resulted in a relatedness value of 53 %. Genome-to-genome-based comparisons gave average nucleotide identities of 93.6 % (reciprocal 93.5 %) for strain 30TX1 and DSM 16337, of 92.8 % (reciprocal 93 %) for strain DL20 and DSM 22670and of 93.0 % (reciprocal 93.2 %) for the two novel strains. The fatty acid profile of the strains consisted of the major fatty acids C, C, C cyclo, Cω7 and/or iso-C 2-OH, and C 7 Genome-to-genome comparison and MLSA results together with the differential biochemical and chemotaxonomic properties showed that strains 30TX1 and DL20 represent novel species, for which the names sp. nov. (type strain 30TX1=CCM 8727=LMG 29916) and sp. nov. (type strain DL20=CCM 8728=LMG 29917) are proposed, respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001770
2017-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/5/1107.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001770&mimeType=html&fmt=ahah

References

  1. Forst S, Clarke D. Bacteria-nematode symbiosis. In Gaugler R. editor Entomopathogenic Nematology Publishing Wallingford; CABI: 2002 pp 57–77 [CrossRef]
    [Google Scholar]
  2. Poinar GO, Thomas GM. A new bacterium, Achromobacter nematophilus sp. nov. (Achromobacteriaceae: eubacteriales) associated with a nematode. Int J Syst Evol Microbiol 1965; 15:249–252 [View Article]
    [Google Scholar]
  3. Thomas GM, Poinar GO Jr. Xenorhabdus gen. nov., a genus of entomopathogenic, nematophilic bacteria of the family Enterobacteriaceae. Int J Syst Bacteriol 1979; 29:352–360 [View Article]
    [Google Scholar]
  4. Akhurst RJ. Xenorhabdus nematophilus subsp. poinarii: its interaction with insect pathogenic nematodes. Syst Appl Microbiol 1986; 8:142–147 [View Article]
    [Google Scholar]
  5. Akhurst RJ, Boemare NE. A numerical taxonomic study of the genus Xenorhabdus (Enterobacteriaceae) and proposed elevation of the subspecies of X. nematophilus to species. J Gen Microbiol 1988; 134:1835–1845 [View Article][PubMed]
    [Google Scholar]
  6. Nishimura Y, Hagiwara A, Suzuki T, Yamanaka S. Xenorhabdus japonicus sp. nov. associated with the nematode Steinernema kushidai. World J Microbiol Biotechnol 1994; 10:207–210 [View Article][PubMed]
    [Google Scholar]
  7. Lengyel K, Lang E, Fodor A, Szállás E, Schumann P et al. Description of four novel species of Xenorhabdus, family Enterobacteriaceae: Xenorhabdus budapestensis sp. nov., Xenorhabdus ehlersii sp. nov., Xenorhabdus innexi sp. nov., and Xenorhabdus szentirmaii sp. nov. Syst Appl Microbiol 2005; 28:115–122 [View Article][PubMed]
    [Google Scholar]
  8. Somvanshi VS, Lang E, Ganguly S, Swiderski J, Saxena AK et al. A novel species of Xenorhabdus, family Enterobacteriaceae: Xenorhabdus indica sp. nov., symbiotically associated with entomopathogenic nematode Steinernema thermophilum Ganguly and Singh, 2000. Syst Appl Microbiol 2006; 29:519–525 [View Article][PubMed]
    [Google Scholar]
  9. Tailliez P, Pagès S, Ginibre N, Boemare N. New insight into diversity in the genus Xenorhabdus, including the description of ten novel species. Int J Syst Evol Microbiol 2006; 56:2805–2818 [View Article][PubMed]
    [Google Scholar]
  10. Tailliez P, Laroui C, Ginibre N, Paule A, Pagès S et al. Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa: X. vietnamensis sp. nov., P. luminescens subsp. caribbeanensis subsp. nov., P. luminescens subsp. Hainanensis subsp. nov., P. temperata subsp. khanii subsp. nov., P. temperata subsp. tasmaniensis subsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperata subsp. thracensis comb. nov. Int J Syst Evol Microbiol 2010; 60:1921–1937 [View Article][PubMed]
    [Google Scholar]
  11. Tailliez P, Pagès S, Edgington S, Tymo LM, Buddie AG. Description of Xenorhabdus magdalenensis sp. nov., the symbiotic bacterium associated with Steinernema australe. Int J Syst Evol Microbiol 2012; 62:1761–1765 [View Article][PubMed]
    [Google Scholar]
  12. Phan K, spiridonov S, Subbotin S, Moens M. Four new Steinernema species of the ‘carpocapsae group’ (Rhabditida: Steinernematidae from Vietnam). Russian J Nematol 2006; 14:11–29
    [Google Scholar]
  13. Phan K, Nguyen N, Moens M. Steinernema sangi sp. n. (rhabditida: steinernematidae from Vietnam). Russian J Nematol. 2001; 9:1–7
    [Google Scholar]
  14. Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  15. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  16. Schauss T, Busse HJ, Golke J, Kämpfer P, Glaeser SP. Empedobacter stercoris sp. nov., isolated from an input sample of a biogas plant. Int J Syst Evol Microbiol 2015; 65:3746–3753 [View Article][PubMed]
    [Google Scholar]
  17. Muyzer G, de Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 1993; 59:695–700[PubMed]
    [Google Scholar]
  18. Brosius J, Palmer ML, Kennedy PJ, Noller HF. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 1978; 75:4801–4805 [View Article][PubMed]
    [Google Scholar]
  19. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  20. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  21. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  22. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008; 31:241–250 [View Article][PubMed]
    [Google Scholar]
  23. Felsenstein J. PHYLIP (Phylogeny Inference Package) Version 3.6. Distributed by the Author University of Washington, Seattle: Department of Genome Sciences; 2005
    [Google Scholar]
  24. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006; 22:2688–2690 [View Article][PubMed]
    [Google Scholar]
  25. Jukes TH, Cantor CR. Evolution of the protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969 pp. 21–132 [CrossRef]
    [Google Scholar]
  26. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article]
    [Google Scholar]
  27. Ferreira T, van Reenen CA, Endo A, Spröer C, Malan AP et al. Description of Xenorhabdus khoisanae sp. nov., the symbiont of the entomopathogenic nematode Steinernema khoisanae. Int J Syst Evol Microbiol 2013; 63:3220–3224 [View Article][PubMed]
    [Google Scholar]
  28. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  29. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  30. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  31. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 1992; 8:275–282 [View Article][PubMed]
    [Google Scholar]
  32. Schwarz G. Estimating the dimension of a model. Ann Stat 1978; 6:461–464 [View Article]
    [Google Scholar]
  33. Ziemke F, Höfle MG, Lalucat J, Rosselló-Mora R. Reclassification of Shewanella putrefaciens owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 1998; 48:179–186 [View Article][PubMed]
    [Google Scholar]
  34. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  35. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  36. Kämpfer P, Steiof M, Dott W. Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 1991; 21:227–251 [View Article][PubMed]
    [Google Scholar]
  37. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  38. Kuwata R, Qiu LH, Wang W, Harada Y, Yoshida M et al. Xenorhabdus ishibashii sp. nov., isolated from the entomopathogenic nematode Steinernema aciari. Int J Syst Evol Microbiol 2013; 63:1690–1695 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001770
Loading
/content/journal/ijsem/10.1099/ijsem.0.001770
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error