1887

Abstract

Four rod–shaped and Gram-stain-negative bacterial strains, CCM 8647, CCM 8649, CCM 8643 and CCM 8648, were isolated from rock samples collected on James Ross Island, Antarctica. Extensive biotyping, fatty acid profiling, chemotaxonomy, 16S rRNA gene sequencing and whole-genome sequencing was applied to isolates to clarify their taxonomic position. Phylogenetic analysis based on 16S rRNA gene sequencing indicated that all four isolates belonged to the genus . Strains CCM 8649 and CCM 8647 were most closely related to OR362-8 (94.4 % 16S rRNA gene sequence similarity), strain CCM 8643 to DG7A (96.3 %) and strain CCM 8648 to VUG-A130 (96.3 %). The predominant fatty acids of CCM 8649 and CCM 8647 were summed feature 3 (Cω7/C ω6), Cω5 and iso-C, whereas those of CCM 8643 and CCM 8648 were summed feature 3 (Cω7/C ω6) and Cω5. The quinone systems contained exclusively menaquinone MK-7. The major polyamine was -homospermidine. All four strains contained the major polar lipid phosphatidylethanolamine. The G+C content of genomic DNA ranged from 60–63 mol%. Whole-genome sequencing data supported the finding that isolates represented distinct species of the genus . On the basis of the results obtained, three novel species are proposed for which the names sp. nov., sp. nov. and sp. nov. are suggested, with the type strains CCM 8649 (=LMG 29441=P5239), CCM 8643 (=LMG 29435=P3150) and CCM 8648 (=LMG 29440=P5086), respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001898
2017-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/6/1975.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001898&mimeType=html&fmt=ahah

References

  1. Chang X, Zheng J, Jiang F, Liu P, Kan W et al. Hymenobacter arcticus sp. nov., isolated from glacial till. Int J Syst Evol Microbiol 2014; 64:2113–2118 [View Article][PubMed]
    [Google Scholar]
  2. Dai J, Wang Y, Zhang L, Tang Y, Luo X et al. Hymenobacter tibetensis sp. nov., a UV-resistant bacterium isolated from Qinghai-Tibet plateau. Syst Appl Microbiol 2009; 32:543–548 [View Article][PubMed]
    [Google Scholar]
  3. Han L, Wu SJ, Qin CY, Zhu YH, Lu ZQ et al. Hymenobacter qilianensis sp. nov., isolated from a subsurface sandstone sediment in the permafrost region of Qilian Mountains, China and emended description of the genus Hymenobacter. Antonie van Leeuwenhoek 2014; 105:971–978 [View Article][PubMed]
    [Google Scholar]
  4. Kang JY, Chun J, Choi A, Moon SH, Cho JC et al. Hymenobacter koreensis sp. nov. and Hymenobacter saemangeumensis sp. nov., isolated from estuarine water. Int J Syst Evol Microbiol 2013; 63:4568–4573 [View Article][PubMed]
    [Google Scholar]
  5. Klassen JL, Foght JM. Characterization of Hymenobacter isolates from Victoria Upper Glacier, Antarctica reveals five new species and substantial non-vertical evolution within this genus. Extremophiles 2011; 15:45–57 [View Article][PubMed]
    [Google Scholar]
  6. Liu L, Zhou EM, Jiao JY, Manikprabhu D, Ming H et al. Hymenobacter latericoloratus sp. nov. and Hymenobacter luteus sp. nov., isolated from freshwater sediment. Antonie van Leeuwenhoek 2015; 107:165–172 [View Article][PubMed]
    [Google Scholar]
  7. Reddy GS, Garcia-Pichel F. Description of Hymenobacter arizonensis sp. nov. from the southwestern arid lands of the United States of America. Antonie van Leeuwenhoek 2013; 103:321–330 [View Article][PubMed]
    [Google Scholar]
  8. Zhang G, Niu F, Busse HJ, Ma X, Liu W et al. Hymenobacter psychrotolerans sp. nov., isolated from the Qinghai-Tibet plateau permafrost region. Int J Syst Evol Microbiol 2008; 58:1215–1220 [View Article][PubMed]
    [Google Scholar]
  9. Zhang DC, Busse HJ, Liu HC, Zhou YG, Schinner F et al. Hymenobacter psychrophilus sp. nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol 2011; 61:859–863 [View Article][PubMed]
    [Google Scholar]
  10. Hirsch P, Ludwig W, Hethke C, Sittig M, Hoffmann B et al. Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antarctic soils and sandstone: bacteria of the Cytophaga/Flavobacterium/Bacteroides line of phylogenetic descent. Syst Appl Microbiol 1998; 21:374–383 [View Article]
    [Google Scholar]
  11. Buczolits S, Denner EB, Kämpfer P, Busse HJ. Proposal of Hymenobacter norwichensis sp. nov., classification of 'Taxeobacter ocellatus', 'Taxeobacter gelupurpurascens' and 'Taxeobacter chitinovorans' as Hymenobacter ocellatus sp. nov., Hymenobacter gelipurpurascens sp. nov. and Hymenobacter chitinivorans sp. nov., respectively, and emended description of the genus Hymenobacter Hirsch et al. 1999. Int J Syst Evol Microbiol 2006; 56:2071–2078 [View Article][PubMed]
    [Google Scholar]
  12. Reddy GS. Phylogenetic analyses of the genus Hymenobacter and description of Siccationidurans gen. nov., and Parahymenobacter gen. nov. J Phylogenetics Evol Biol 2013; 01:122 [View Article]
    [Google Scholar]
  13. Buczolits S, Busse HJ. Hymenobacter. 1-11. In Whitman WB. editor Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons, Inc; 2015
    [Google Scholar]
  14. Parte AC. LPSN—list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42:D613–D616 [View Article][PubMed]
    [Google Scholar]
  15. Klassen JL, Foght JM. Differences in carotenoid composition among Hymenobacter and related strains support a tree-like model of carotenoid evolution. Appl Environ Microbiol 2008; 74:2016–2022 [View Article][PubMed]
    [Google Scholar]
  16. Chung AP, Lopes A, Nobre MF, Morais PV. Hymenobacter perfusus sp. nov., Hymenobacter flocculans sp. nov. and Hymenobacter metalli sp. nov. three new species isolated from an uranium mine waste water treatment system. Syst Appl Microbiol 2010; 33:436–443 [View Article][PubMed]
    [Google Scholar]
  17. Buczolits S, Denner EB, Vybiral D, Wieser M, Kämpfer P et al. Classification of three airborne bacteria and proposal of Hymenobacter aerophilus sp. nov. Int J Syst Evol Microbiol 2002; 52:445–456 [View Article][PubMed]
    [Google Scholar]
  18. Collins MD, Hutson RA, Grant IR, Patterson MF. Phylogenetic characterization of a novel radiation-resistant bacterium from irradiated pork: description of Hymenobacter actinosclerus sp. nov. Int J Syst Evol Microbiol 2000; 50:731–734 [View Article][PubMed]
    [Google Scholar]
  19. Su S, Chen M, Teng C, Jiang S, Zhang C et al. Hymenobacter kanuolensis sp. nov., a novel radiation-resistant bacterium. Int J Syst Evol Microbiol 2014; 64:2108–2112 [View Article]
    [Google Scholar]
  20. Zhang Q, Liu C, Tang Y, Zhou G, Shen P et al. Hymenobacter xinjiangensis sp. nov., a radiation-resistant bacterium isolated from the desert of Xinjiang, China. Int J Syst Evol Microbiol 2007; 57:1752–1756 [View Article]
    [Google Scholar]
  21. Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC. Isolation and direct complete nucleotide determination of entire genes. characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 1989; 17:7843–7853 [View Article][PubMed]
    [Google Scholar]
  22. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  23. Kumar S, Stecher G, Tamura K. mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  24. Sedláček I, Kwon SW, Švec P, Mašlaňová I, Kýrová K et al. Aquitalea pelogenes sp. nov., isolated from mineral peloid. Int J Syst Evol Microbiol 2016; 66:962–967 [View Article][PubMed]
    [Google Scholar]
  25. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  26. Lee I, Ouk Kim Y, Chun J, Park S-C. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  27. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  28. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  29. Carlone GM, Valadez MJ, Pickett MJ. Methods for distinguishing gram-positive from gram-negative bacteria. J Clin Microbiol 1983; 16:1157–1159
    [Google Scholar]
  30. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  31. Burns J, Fraser PD, Bramley PM. Identification and quantification of carotenoids, tocopherols and chlorophylls in commonly consumed fruits and vegetables. Phytochem 2003; 62:939–947 [View Article][PubMed]
    [Google Scholar]
  32. Hirsch P, Gallikowski CA, Siebert J, Peissl K, Kroppenstedt R et al. Deinococcus frigens sp. nov., Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and draught-tolerating, UV-resistant bacteria from continental Antarctica. Syst Appl Microbiol 2004; 27:636–645 [View Article][PubMed]
    [Google Scholar]
  33. Da X, Fang C, Deng S, Zhang Y, Chang X et al. Pedobacter ardleyensis sp. nov., isolated from soil in Antarctica. Int J Syst Evol Microbiol 2015; 65:3841–3846 [View Article]
    [Google Scholar]
  34. Hugh R, Leifson E. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram-negative bacteria. J Bacteriol 1953; 66:24–26
    [Google Scholar]
  35. Christensen WB. Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol 1946; 52:461–466[PubMed]
    [Google Scholar]
  36. Brooks K, Sodeman T. A rapid method for determining decarboxylase and dihydrolase activity. J Clin Pathol 1974; 27:148–152 [View Article][PubMed]
    [Google Scholar]
  37. Barrow GL, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3 ed. Great Britain: Cambridge University Press; 1993 [CrossRef]
    [Google Scholar]
  38. Páčová Z, Kocur M. New medium for detection of esterase and gelatinase activity. Zb Bakt Hyg 1984; 258:69–73
    [Google Scholar]
  39. Kurup VP, Babcock JB. Use of casein, tyrosine, and hypoxanthine in the identification of nonfermentative gram-negative bacilli. Med Microbiol Immunol 1979; 167:71–75 [View Article][PubMed]
    [Google Scholar]
  40. Owens JJ. The egg yolk reaction produced by several species of bacteria. J Appl Bacteriol 1974; 37:137–148 [View Article]
    [Google Scholar]
  41. Lowe GH. The rapid detection of lactose fermentation in paracolon organisms by the demonstration of beta-D-galactosidase. J Med Lab Technol 1962; 19:21–25
    [Google Scholar]
  42. Oberhofer TR, Rowen JW. Acetamide agar for differentiation of nonfermentative bacteria. Appl Microbiol 1974; 28:720–721
    [Google Scholar]
  43. Ewing WH. Enterobacteriaceae. Biochemical Methods for Group Differentation Atlanta: Public Health Service Publication no 734 CDC; 1960
    [Google Scholar]
  44. EUCAST-European committee on antimicrobial susceptibility testing EUCAST Clinical Breakpoints - Bacteria, Version 5.0. http://www.eucast.org 2015
    [Google Scholar]
  45. CLSI Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement (M100-S25) vol. 35 2015 ISBN 1-56238-989-0
    [Google Scholar]
  46. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  47. Altenburger P, Kämpfer P, Makristathis A, Lubitz W, Busse H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996; 47:39–52 [View Article]
    [Google Scholar]
  48. Stolz A, Busse HJ, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007; 57:572–576 [View Article][PubMed]
    [Google Scholar]
  49. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990a; 66:199–202 [View Article]
    [Google Scholar]
  50. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990b; 13:128–130 [View Article]
    [Google Scholar]
  51. Busse HJ, Auling G. Polyamine pattern as a chemotaxonomic marker within the proteobacteria. Syst Appl Microbiol 1988; 11:1–8 [View Article]
    [Google Scholar]
  52. Busse HJ, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997; 47:698–708 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001898
Loading
/content/journal/ijsem/10.1099/ijsem.0.001898
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error