- Home
- Publications
- International Journal of Systematic and Evolutionary Microbiology
- Volume 67, Issue 7
- Article

f Erythrobacter xanthus sp. nov., isolated from surface seawater of the South China Sea
- Authors: Dan-Dan Li1,† , Yan-Qi Zhang1,† , Ming Peng1 , Ning Wang1 , Xiu-Juan Wang1 , Xi-Ying Zhang1,2 , Ping-Yi Li1,2 , Bin-Bin Xie1,2 , Xiu-Lan Chen1,2 , Yu-Zhong Zhang1,2,3 , Qi-Long Qin1,2
-
- VIEW AFFILIATIONS
-
1 1State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan 250100, PR China 2 2Institute of Marine Science and Technology, Shandong University, Jinan 250100, PR China 3 3Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
- *Correspondence: Qi-Long Qin, [email protected]
- First Published Online: 15 July 2017, International Journal of Systematic and Evolutionary Microbiology 67: 2459-2464, doi: 10.1099/ijsem.0.001991
- Subject: New Taxa - Proteobacteria
- Received:
- Accepted:
- Cover date:




Erythrobacter xanthus sp. nov., isolated from surface seawater of the South China Sea, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/ijsem/67/7/2459_ijsem001991-1.gif
-
A Gram-reaction-negative, aerobic, oxidase- and catalase-positive, yellow-pigmented, non-flagellated, rod-shaped bacterium, designed strain SM1501T, was isolated from surface seawater of the South China Sea. SM1501T grew at 7–42 °C and with 0–11 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences revealed that SM1501T represented a member of the genus Erythrobacter , sharing the highest 16S rRNA gene sequence similarity (97.4 %) with Erythrobacter luteus and 94.2–96.5 % 16S rRNA gene sequence similarities to other species of the genus Erythrobacter with validly published names. The average nucleotide identity (ANI) value and in silico DNA–DNA hybridization value between SM1501T and E. luteus were only 74.6 and 20.0 %, respectively. The predominant cellular fatty acids of SM1501T were C17 : 1ω6c, C18 : 1ω7c and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH). The major polar lipids of the strain were phosphatidylethanolamine, phosphatidylglycerol, sphingoglycolipid, diphosphatidylglycerol and phosphatidylcholine and the main respiratory quinone of was Q-10. Polyphasic data presented in this paper support the notion that SM1501T represents a novel species in the genus Erythrobacter , for which the name Erythrobacter xanthus sp. nov. is proposed. The type strain of Erythrobacter xanthus is SM1501T (=KCTC 42669T=CCTCC AB 2015396T).
-
†
These authors contributed equally to this work.
-
The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain SM1501T is KU529278.
-
Three supplementary figures are available with the online Supplementary Material.
- Keyword(s): the genus Erythrobacter, seawater, sp. nov.
© 2017 IUMS | Published by the Microbiology Society
-
1. Shiba T, Simidu U. Erythrobacter longus gen. nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a. Int J Syst Bacteriol 1982; 32: 211– 217 [CrossRef]
-
2. Yoon JH, Oh TK, Park YH. Erythrobacter seohaensis sp. nov. and Erythrobacter gaetbuli sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 2005; 55: 71– 75 [CrossRef] [PubMed]
-
3. Lee YS, Lee DH, Kahng HY, Kim EM, Jung JS. Erythrobacter gangjinensis sp. nov., a marine bacterium isolated from seawater. Int J Syst Evol Microbiol 2010; 60: 1413– 1417 [CrossRef] [PubMed]
-
4. Xu M, Xin Y, Yu Y, Zhang J, Zhou Y et al. Erythrobacter nanhaisediminis sp. nov., isolated from marine sediment of the South China Sea. Int J Syst Evol Microbiol 2010; 60: 2215– 2220 [CrossRef] [PubMed]
-
5. Jung YT, Park S, Oh TK, Yoon JH. Erythrobacter marinus sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2012; 62: 2050– 2055 [CrossRef] [PubMed]
-
6. Jung YT, Park S, Lee JS, Yoon JH. Erythrobacter lutimaris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014; 64: 4184– 4190 [CrossRef] [PubMed]
-
7. Tonon LAC, Moreira APB, Thompson F. The family Erythrobacteraceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. (editors) The Prokaryotes: Alphaproteobacteria and Betaproteobacteria Berlin, Heidelberg: Springer Berlin Heidelberg; 2014; pp. 213– 235 [CrossRef]
-
8. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991; pp. 115– 175
-
9. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62: 716– 721 [CrossRef] [PubMed]
-
10. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28: 2731– 2739 [CrossRef] [PubMed]
-
11. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
-
12. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
-
13. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef]
-
14. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
-
15. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106: 19126– 19131 [CrossRef] [PubMed]
-
16. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14: 60 [CrossRef] [PubMed]
-
17. Wayne L, Brenner D, Colwell R, Grimont P, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37: 463– 464 [CrossRef]
-
18. Komagata K, Suzuki K. Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161– 207 [CrossRef]
-
19. Collins MD, Jones D. Lipids in the classification and identification of Coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48: 459– 470 [CrossRef]
-
20. Subhash Y, Tushar L, Sasikala Ch, Ramana ChV. Erythrobacter odishensis sp. nov. and Pontibacter odishensis sp. nov. isolated from dry soil of a solar saltern. Int J Syst Evol Microbiol 2013; 63: 4524– 4532 [CrossRef] [PubMed]
-
21. Murray RGE, Doetsch RN, Robinow CF. Determinative and cytological light microscopy. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 21– 41
-
22. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
-
23. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50: 1861– 1868 [CrossRef] [PubMed]
-
24. Martens T, Heidorn T, Pukall R, Simon M, Tindall BJ et al. Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1999 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera. Int J Syst Evol Microbiol 2006; 56: 1293– 1304 [CrossRef] [PubMed]
-
25. Lei X, Zhang H, Chen Y, Li Y, Chen Z et al. Erythrobacter luteus sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2015; 65: 2472– 2478 [CrossRef] [PubMed]
-
26. Zhuang L, Liu Y, Wang L, Wang W, Shao Z. Erythrobacter atlanticus sp. nov., a bacterium from ocean sediment able to degrade polycyclic aromatic hydrocarbons. Int J Syst Evol Microbiol 2015; 65: 3714– 3719 [CrossRef] [PubMed]

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/ijsem/10.1099/ijsem.0.001991dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/ijsem/10.1099/ijsem.0.001991dcterms_title,dcterms_subject-pub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....