- Home
- Publications
- International Journal of Systematic and Evolutionary Microbiology
- Volume 67, Issue 10
- Article

f Nocardioides agrisoli sp. nov., isolated from farmland soil
- Authors: Xiang Wang1 , Wan-Kui Jiang1 , Meng-Di Cui1 , Zhan-Gong Yang1 , Xing Yu1 , Gang Hu1,2 , Hao Zhang1 , Qing Hong1
-
- VIEW AFFILIATIONS
-
1 1Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China 2 2Laboratory Centre of Life Science, College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- *Correspondence: Qing Hong [email protected]
- First Published Online: 06 September 2017, International Journal of Systematic and Evolutionary Microbiology 67: 3722-3727, doi: 10.1099/ijsem.0.002158
- Subject: New taxa - Actinobacteria
- Received:
- Accepted:
- Cover date:




Nocardioides agrisoli sp. nov., isolated from farmland soil, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/ijsem/67/10/3722_ijsem002158-1.gif
-
A novel Gram-stain-positive bacterium, designated djl-8T, was isolated from farmland soil in Nanjing, Jiangsu province, PR China. Cells of strain djl-8T were aerobic, non-motile, non-spore-forming and rod-shaped. The organism grew at 25–37 °C, pH 5.5–8.0 and 0.5–4.0 % NaCl (w/v). The DNA G+C content was 69.3 mol%. The diagnostic diamino acid in the cell-wall peptidoglycan was LL-2, 6-diaminopimelic acid. The major fatty acids (>5 %) were iso-C16 : 0, anteiso-C17 : 0, iso-C15 : 0, 10-Me C17 : 0 and C17 : 1ω8c. The respiratory quinone was MK-8 (H4) and the major polar lipids were phosphatidylglycerol, phosphatidylinositol, diphosphatidylglycerol and unknown phospholipids. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain djl-8T is a member of the genus Nocardioides and shared the highest similarity with Nocardioides ginkgobilobae SYP-A7303T (97.1 %), followed by Nocardioides soli mbc-2T (96.9 %), Nocardioide spyridinolyticus OS4T (96.6 %) and Nocardioides maradonensis RP-B30T (96.6 %). Strain djl-8T exhibited low DNA–DNA relatedness with Nocardioides ginkgobilobae SYP-A7303T (26.9±2.1 %). On the basis of the morphological, physiological, biochemical and chemotaxonomic characteristics presented in this study, strain djl-8T represents a novel species of the genus Nocardioides , for which the name Nocardioides agrisoli sp. nov. is proposed. The type strain is djl-8T (=KCTC 39844T=CCTCC AB 2017058T).
-
The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain Nocardioides agrisoli djl-8T is KX380192.
-
Four supplementary figures are available with the online Supplementary Material.
© 2017 IUMS | Published by the Microbiology Society
-
1. Prauser H. Nocardioides, a New Genus of the order Actinomycetales. Int J Syst Bacteriol 1976; 26: 58– 65 [CrossRef]
-
2. Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, actinobacteria classis nov. Int J Syst Bacteriol 1997; 47: 479– 491 [CrossRef]
-
3. Lim JM, Kim SJ, Hamada M, Ahn JH, Weon HY et al. Nocardioides daecheongensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2014; 64: 4109– 4114 [CrossRef] [PubMed]
-
4. Lee SD, Seong CN. Nocardioides opuntiae sp. nov., isolated from soil of a cactus. Int J Syst Evol Microbiol 2014; 64: 2094– 2099 [CrossRef] [PubMed]
-
5. Fan X, Qiao Y, Gao X, Zhang XH. Nocardioides pacificus sp. nov., isolated from deep sub-seafloor sediment. Int J Syst Evol Microbiol 2014; 64: 2217– 2222 [CrossRef] [PubMed]
-
6. Lee SD, Lee DW. Nocardioides rubroscoriae sp. nov., isolated from volcanic ash. Antonie van Leeuwenhoek 2014; 105: 1017– 1023 [CrossRef] [PubMed]
-
7. Sun LN, Zhang J, Gong FF, Wang X, Hu G et al. Nocardioides soli sp. nov., a carbendazim-degrading bacterium isolated from soil under the long-term application of carbendazim. Int J Syst Evol Microbiol 2014; 64: 2047– 2052 [CrossRef] [PubMed]
-
8. Glaeser SP, Mcinroy JA, Busse HJ, Kämpfer P. Nocardioides zeae sp. nov., isolated from the stem of Zea mays. Int J Syst Evol Microbiol 2014; 64: 2491– 2496 [CrossRef] [PubMed]
-
9. Srinivasan S, Lee SS, Lee JJ, Kim MK. Nocardioides soli sp. nov., a bacterium isolated from a mountain soil. Antonie van Leeuwenhoek 2014; 106: 271– 278 [CrossRef] [PubMed]
-
10. Deng S, Chang X, Zhang Y, Ren L, Jiang F et al. Nocardioides antarcticus sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2015; 65: 2615– 2621 [CrossRef] [PubMed]
-
11. Tuo L, Dong YP, Habden X, Liu JM, Guo L et al. Nocardioides deserti sp. nov., an actinobacterium isolated from desert soil. Int J Syst Evol Microbiol 2015; 65: 1604– 1610 [CrossRef] [PubMed]
-
12. Lin SY, Wen CZ, Hameed A, Liu YC, Hsu YH et al. Nocardioides echinoideorum sp. nov., isolated from sea urchins (Tripneustes gratilla). Int J Syst Evol Microbiol 2015; 65: 1953– 1958 [CrossRef] [PubMed]
-
13. Liu Q, Liu HC, Zhang JL, Zhou YG, Xin YH. Nocardioides glacieisoli sp. nov., isolated from a glacier. Int J Syst Evol Microbiol 2015; 65: 4845– 4849 [CrossRef] [PubMed]
-
14. Sultanpuram VR, Mothe T, Mohammed F. Nocardioides solisilvae sp. nov., isolated from a forest soil. Antonie van Leeuwenhoek 2015; 107: 1599– 1606 [CrossRef] [PubMed]
-
15. Zhao Y, Liu Q, Kang MS, Jin F, Yu H et al. Nocardioides ungokensis sp. nov., isolated from lake sediment. Int J Syst Evol Microbiol 2015; 65: 4857– 4862 [CrossRef] [PubMed]
-
16. Singh H, Du J, Trinh H, Won K, Yang JE et al. Nocardioides albidus sp. nov., an actinobacterium isolated from garden soil. Int J Syst Evol Microbiol 2016; 66: 371– 378 [CrossRef] [PubMed]
-
17. Xu H, Zhang S, Cheng J, Asem MD, Zhang MY et al. Nocardioides ginkgobilobae sp. nov., an endophytic actinobacterium isolated from the root of the living fossil Ginkgo biloba L. Int J Syst Evol Microbiol 2016; 66: 2013– 2018 [CrossRef] [PubMed]
-
18. Wang L, Li J, Zhang G. Nocardioides rotundus sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 2016; 66: 1932– 1936 [CrossRef] [PubMed]
-
19. Kämpfer P, Glaeser SP, Mcinroy JA, Busse HJ. Nocardioides zeicaulis sp. nov., an endophyte actinobacterium of maize. Int J Syst Evol Microbiol 2016; 66: 1869– 1874 [CrossRef] [PubMed]
-
20. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG et al. (editors) Short Protocols in Molecular Biology: a Compendium of Methods from Current Protocols in Molecular Biology, 3rd ed. New York: Wiley; 1995
-
21. Lane DL. 16S/23S rRNA sequencing. In Stackebrandt ER, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester, United Kingdom: Wiley; 1991; pp. 115– 175
-
22. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62: 716– 721 [CrossRef] [PubMed]
-
23. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725– 2729 [CrossRef] [PubMed]
-
24. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876– 4882 [CrossRef] [PubMed]
-
25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
-
26. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20: 406– 416 [CrossRef]
-
27. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
-
28. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16: 111– 120 [CrossRef] [PubMed]
-
29. Beveridge TJ, Lawrence JR, Murray RGE. Sampling and staining for light microscopy. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder RL. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp. 19– 33
-
30. Suzuki M, Nakagawa Y, Harayama S, Yamamoto S. Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 2001; 51: 1639– 1652 [CrossRef] [PubMed]
-
31. Ebersole LL. Acid-fast stain procedures. In Isenberg HD. (editor) Clinical Microbiology Procedures Handbook Washington, DC: American Society for Microbiology; 1992; pp. 3.5.1– 3.5.3
-
32. Breznak JA, Costilow RN. Physicochemical factors in growth. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 137– 154
-
33. Zhang H, Cheng MG, Sun B, Guo SH, Song M et al. Flavobacterium suzhouense sp. nov., isolated from farmland river sludge. Int J Syst Evol Microbiol 2015; 65: 370– 374 [CrossRef] [PubMed]
-
34. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
-
35. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
-
36. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100: 221– 230 [CrossRef] [PubMed]
-
37. Groth I, Schumann P, Weiss N, Martin K, Rainey FA. Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 1996; 46: 234– 239 [CrossRef] [PubMed]
-
38. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161– 207 [Crossref]
-
39. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newslett 1990; 20: 1– 6
-
40. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39: 159– 167 [CrossRef]
-
41. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12: 133– 142 [CrossRef] [PubMed]
-
42. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44: 846– 849 [CrossRef]
-
43. Yoon JH, Kang SJ, Park S, Kim W, Oh TK. Nocardioides caeni sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 2009; 59: 2794– 2797 [CrossRef] [PubMed]

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/ijsem/10.1099/ijsem.0.002158dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/ijsem/10.1099/ijsem.0.002158dcterms_title,dcterms_subject-pub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....