1887

Abstract

The strain BerOc1 was isolated from brackish sediments contaminated with hydrocarbons and heavy metals. This strain has been used as a model strain of sulfate-reducer to study the biomethylation of mercury. The cells are vibrio-shaped, motile and not sporulated. Phylogeny and physiological traits placed this strain within the genus . Optimal growth was obtained at 30 °C, 1.5 % NaCl and pH 6.0–7.4. The estimated G+C content of the genomic DNA was 62.6 mol%. BerOc1 used lactate, pyruvate, fumarate, ethanol and hydrogen. Terminal electron acceptors used were sulfate, sulfite, thiosulfate and DMSO. Only pyruvate could be used without a terminal electron acceptor. The major fatty acids were C, anteiso-C, C and Cω7. The name sp. nov. is proposed for the type strain BerOc1 (DSM 10384=JCM 31820).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002173
2018-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/5/1461.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002173&mimeType=html&fmt=ahah

References

  1. Creamer NJ, Baxter-Plant VS, Henderson J, Potter M, Macaskie LE. Palladium and gold removal and recovery from precious metal solutions and electronic scrap leachates by Desulfovibrio desulfuricans . Biotechnol Lett 2006; 28:1475–1484 [View Article][PubMed]
    [Google Scholar]
  2. Ranchou-Peyruse M, Monperrus M, Bridou R, Duran R, Amouroux D et al. Overview of mercury methylation capacities among anaerobic bacteria including representatives of the sulphate-reducers: implications for environmental studies. Geomicrobiol J 2009; 26:1–8 [View Article]
    [Google Scholar]
  3. Bridou R, Monperrus M, Gonzalez PR, Guyoneaud R, Amouroux D. Simultaneous determination of mercury methylation and demethylation capacities of various sulfate-reducing bacteria using species-specific isotopic tracers. Environ Toxicol Chem 2011; 30:337–344 [View Article][PubMed]
    [Google Scholar]
  4. Pedrero Z, Bridou R, Mounicou S, Guyoneaud R, Monperrus M et al. Transformation, localization, and biomolecular binding of Hg species at subcellular level in methylating and nonmethylating sulfate-reducing bacteria. Environ Sci Technol 2012; 46:11744–11751 [View Article][PubMed]
    [Google Scholar]
  5. Goñi-Urriza M, Corsellis Y, Lanceleur L, Tessier E, Gury J et al. Relationships between bacterial energetic metabolism, mercury methylation potential, and hgcA/hgcB gene expression in Desulfovibrio dechloroacetivorans BerOc1. Environ Sci Pollut Res Int 2015; 22:13764–13771 [View Article][PubMed]
    [Google Scholar]
  6. Perrot V, Bridou R, Pedrero Z, Guyoneaud R, Monperrus M et al. Identical Hg isotope mass dependent fractionation signature during methylation by sulfate-reducing bacteria in sulfate and sulfate-free environment. Environ Sci Technol 2015; 49:1365–1373 [View Article][PubMed]
    [Google Scholar]
  7. Goñi Urriza M, Gassie C, Bouchez O, Klopp C, Guyoneaud R. Draft genome sequence of Desulfovibrio BerOc1, a mercury-methylating strain. Genome Announc 2017; 5:e01483-16 [View Article][PubMed]
    [Google Scholar]
  8. Colin Y, Gury J, Monperrus M, Gentes S, Ayala Borda P et al. Biosensor for screening bacterial mercury methylation: example within the Desulfobulbaceae . Res Microbiol 2018; 169:44–51 [View Article][PubMed]
    [Google Scholar]
  9. Gentès S, Taupiac J, Colin Y, André JM, Guyoneaud R. Bacterial periphytic communities related to mercury methylation within aquatic plant roots from a temperate freshwater lake (South-Western France). Environ Sci Pollut Res Int 2017; 24:19223–19233 [View Article][PubMed]
    [Google Scholar]
  10. Cao J, Gayet N, Zeng X, Shao Z, Jebbar M et al. Pseudodesulfovibrio indicus gen. nov., sp. nov., a piezophilic sulfate-reducing bacterium from the Indian Ocean and reclassification of four species of the genus Desulfovibrio . Int J Syst Evol Microbiol 2016; 66:3904–3911 [View Article][PubMed]
    [Google Scholar]
  11. Khelaifia S, Fardeau ML, Pradel N, Aussignargues C, Garel M et al. Desulfovibrio piezophilus sp. nov., a piezophilic, sulfate-reducing bacterium isolated from wood falls in the Mediterranean Sea. Int J Syst Evol Microbiol 2011; 61:2706–2711 [View Article][PubMed]
    [Google Scholar]
  12. Bale SJ, Goodman K, Rochelle PA, Marchesi JR, Fry JC et al. Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int J Syst Bacteriol 1997; 47:515–521 [View Article][PubMed]
    [Google Scholar]
  13. Suzuki D, Ueki A, Amaishi A, Ueki K. Desulfovibrio portus sp. nov., a novel sulfate-reducing bacterium in the class Deltaproteobacteria isolated from an estuarine sediment. J Gen Appl Microbiol 2009; 55:125–133 [View Article][PubMed]
    [Google Scholar]
  14. Motamedi M, Pedersen K. Desulfovibrio aespoeensis sp. nov., a mesophilic sulfate-reducing bacterium from deep groundwater at Aspö hard rock laboratory, Sweden. Int J Syst Bacteriol 1998; 48:311–315 [View Article][PubMed]
    [Google Scholar]
  15. Sun B, Cole JR, Sanford RA, Tiedje JM. Isolation and characterization of Desulfovibrio dechloracetivorans sp. nov., a marine dechlorinating bacterium growing by coupling the oxidation of acetate to the reductive dechlorination of 2-chlorophenol. Appl Environ Microbiol 2000; 66:2408–2413 [View Article][PubMed]
    [Google Scholar]
  16. Sun B, Cole JR, Sanford RA, Tiedje JM. Desulfovibrio dechloroacetivorans sp. nov. In Validation of publication of new names and new combinations previously effectively published outside the IJSEM, List no. 78. Int J Syst Evol Microbiol 2001; 51:1–2 [Crossref]
    [Google Scholar]
  17. Ranchou-Peyruse A, Moppert X, Hourcade E, Hernandez G, Caumette P et al. Characterization of brackish anaerobic bacteria involved in hydrocarbon degradation: a combination of molecular and culture-based approaches. Ophelia 2004; 58:255–262 [View Article]
    [Google Scholar]
  18. Widdel F, Bak F. Gram negative mesophilic sulfate-reducing bacteria. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH et al. (editors) The Prokaryotes vol. 4 New York: Springer-Verlag; 1992 pp. 583–624
    [Google Scholar]
  19. Eichler B, Pfennig N. Characterization of a new platelet-forming purple sulfur bacterium, Amoebobacter pedioformis sp. nov. Arch Microbiol 1986; 146:295–300 [View Article]
    [Google Scholar]
  20. Pfennig N, Trüper HG. The family Chromatiaceae . In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH et al. (editors) The Prokaryotes vol. 4 New York: Springer-Verlag; 1992 pp. 3200–3221 [Crossref]
    [Google Scholar]
  21. Berlendis S, Ranchou-Peyruse M, Fardeau ML, Lascourrèges JF, Joseph M et al. Desulfotomaculum aquiferis sp. nov. and Desulfotomaculum profundi sp. nov., isolated from a deep natural gas storage aquifer. Int J Syst Evol Microbiol 2016; 66:4329–4338 [View Article][PubMed]
    [Google Scholar]
  22. Lane DJ. rRNA sequencing. In Stachenbradt GME. (editor) Nucleic Acid Techniques In bacterial Systematics Chichester, United Kingdom: Wiley; 1991 pp. 115–175
    [Google Scholar]
  23. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  24. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  25. Gilmour CC, Elias DA, Kucken AM, Brown SD, Palumbo AV et al. Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation. Appl Environ Microbiol 2011; 77:3938–3951 [View Article][PubMed]
    [Google Scholar]
  26. Cao J, Maignien L, Shao Z, Alain K, Jebbar M. Genome sequence of the piezophilic, mesophilic sulfate-reducing bacterium Desulfovibrio indicus J2T . Genome Announc 2016; 4:e00214-16 [View Article][PubMed]
    [Google Scholar]
  27. Brown SD, Gilmour CC, Kucken AM, Wall JD, Elias DA et al. Genome sequence of the mercury-methylating strain Desulfovibrio desulfuricans ND132. J Bacteriol 2011; 193:2078–2079 [View Article][PubMed]
    [Google Scholar]
  28. Rodriguez-R LM, Konstantinidis KT. Estimating coverage in metagenomic data sets and why it matters. Isme J 2014; 8:2349–2351 [View Article][PubMed]
    [Google Scholar]
  29. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  30. Konstantinidis KT, Ramette A, Tiedje JM. The bacterial species definition in the genomic era. Philos Trans R Soc Lond B Biol Sci 2006; 361:1929–1940 [View Article][PubMed]
    [Google Scholar]
  31. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  32. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  33. Figueras MJ, Beaz-Hidalgo R, Hossain MJ, Liles MR. Taxonomic affiliation of new genomes should be verified using average nucleotide identity and multilocus phylogenetic analysis. Genome Announc 2014; 2:e00927-14 [View Article][PubMed]
    [Google Scholar]
  34. Mesbah M, Whitman WB. Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr 1989; 479:297–306 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002173
Loading
/content/journal/ijsem/10.1099/ijsem.0.002173
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error