1887

Abstract

A bacterial strain, designated TPY-10, was isolated from calla lily roots in Taiwan and characterized by using a polyphasic taxonomy approach. Cells of strain TPY-10 were Gram-stain-negative, strictly aerobic, motile and creamy white rods. Growth occurred at 15–35 °C (optimum, 25–30 °C), at pH 6–7 (optimum, pH 6) and with 0–1 % NaCl (optimum, 0 %). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain TPY-10 belonged to the genus and was most closely related to ACM 2601 with sequence similarity of 97.8 %. Strain TPY-10 contained C, summed feature 3 (Cω7 and/or Cω6) and Cω7 as the predominant fatty acids. The only isoprenoid quinone was Q-9. The major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. The DNA G+C content of the genomic DNA was 49.8 mol%. The DNA–DNA hybridization value for strain TPY-10 with ACM 2601 was less than 21 %. On the basis of the phylogenetic inference and phenotypic data, strain TPY-10 should be classified as a novel species, for which the name sp. nov. is proposed. The type strain is TPY-10 (=BCRC 80525=LMG 27291=KCTC 32239).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002178
2017-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/9/3615.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002178&mimeType=html&fmt=ahah

References

  1. Winogradsky S. Etudes sur la microbiologie du sol. Sur la degradation de la cellulose dans le sol. Ann Inst Pasteur 1929; 43:549–633
    [Google Scholar]
  2. Blackall LL, Hayward AC, Sly LI. Cellulolytic and dextranolytic Gram-negative bacteria: revival of the genus Cellvibrio. J Appl Bacteriol 1985; 59:81–97 [View Article]
    [Google Scholar]
  3. Humphry DR, Black GW, Cummings SP. Reclassification of 'Pseudomonas fluorescens subsp. cellulosa' NCIMB 10462 (Ueda et al. 1952) as Cellvibrio japonicus sp. nov. and revival of Cellvibrio vulgaris sp. nov., nom. rev. and Cellvibrio fulvus sp. nov., nom. rev. Int J Syst Evol Microbiol 2003; 53:393–400 [View Article][PubMed]
    [Google Scholar]
  4. Suarez C, Ratering S, Kramer I, Schnell S. Cellvibrio diazotrophicus sp. nov., a nitrogen-fixing bacteria isolated from the rhizosphere of salt meadow plants and emended description of the genus Cellvibrio. Int J Syst Evol Microbiol 2014; 64:481–486 [View Article][PubMed]
    [Google Scholar]
  5. Spring S, Scheuner C, Göker M, Klenk HP. A taxonomic framework for emerging groups of ecologically important marine gammaproteobacteria based on the reconstruction of evolutionary relationships using genome-scale data. Front Microbiol 2015; 6:281 [View Article][PubMed]
    [Google Scholar]
  6. Mergaert J, Lednická D, Goris J, Cnockaert MC, de Vos P et al. Taxonomic study of Cellvibrio strains and description of Cellvibrio ostraviensis sp. nov., Cellvibrio fibrivorans sp. nov. and Cellvibrio gandavensis sp. nov. Int J Syst Evol Microbiol 2003; 53:465–471 [View Article][PubMed]
    [Google Scholar]
  7. Chen WM, Liu LP, Sheu SY. Cellvibrio fontiphilus sp. nov., isolated from a spring. Int J Syst Evol Microbiol 2017; 2017:
    [Google Scholar]
  8. Chen WM, Laevens S, Lee TM, Coenye T, de Vos P et al. Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 2001; 51:1729–1735 [View Article][PubMed]
    [Google Scholar]
  9. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  10. Anzai Y, Kudo Y, Oyaizu H. The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 1997; 47:249–251 [View Article][PubMed]
    [Google Scholar]
  11. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  12. Cole JR, Wang Q, Cardenas E, Fish J, Chai B et al. The Ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 2009; 37:D141–D145 [View Article][PubMed]
    [Google Scholar]
  13. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  14. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  15. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  16. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983 [CrossRef]
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  19. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18:1–32 [View Article]
    [Google Scholar]
  20. Felsenstein J. PHYLIP (Phylogeny Inference Package), Version 3.5c Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA 1993
    [Google Scholar]
  21. Beveridge TJ, Lawrence JR, Murray RGE. Sampling and staining for light microscopy. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007 pp. 19–33
    [Google Scholar]
  22. Powers EM. Efficacy of the Ryu nonstaining KOH technique for rapidly determining Gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995; 61:3756–3758[PubMed]
    [Google Scholar]
  23. Breznak JA, Costilow RN. Physicochemical factors in growth. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007 pp. 309–329
    [Google Scholar]
  24. Chen WM, Huang WC, Sheu SY. Derxia lacustris sp. nov., a nitrogen-fixing bacterium isolated from a freshwater lake. Int J Syst Evol Microbiol 2013; 63:965–970 [View Article][PubMed]
    [Google Scholar]
  25. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparativesystematic. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007 pp. 330–393
    [Google Scholar]
  26. Wen CM, Tseng CS, Cheng CY, Li YK. Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. Biotechnol Appl Biochem 2002; 35:213–219 [View Article][PubMed]
    [Google Scholar]
  27. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50:1861–1868 [View Article][PubMed]
    [Google Scholar]
  28. Chang SC, Wang JT, Vandamme P, Hwang JH, Chang PS et al. Chitinimonas taiwanensis gen. nov., sp. nov., a novel chitinolytic bacterium isolated from a freshwater pond for shrimp culture. Syst Appl Microbiol 2004; 27:43–49 [View Article][PubMed]
    [Google Scholar]
  29. Nokhal T-H, Schlegel HG. Taxonomic study of Paracoccus denitrificans. Int J Syst Bacteriol 1983; 33:26–37 [View Article]
    [Google Scholar]
  30. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  31. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  32. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101 Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  33. Collins MD. Isoprenoid quinones. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994 pp. 265–309
    [Google Scholar]
  34. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  35. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994 pp. 121–161
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002178
Loading
/content/journal/ijsem/10.1099/ijsem.0.002178
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error