1887

Abstract

A novel Gram-stain-negative, rod-shaped, non-spore-forming, aerobic, agarolytic bacterium, designated 017, was isolated from collected at the coast of Lingshui county, Hainan province, China. Optimal growth occurred at 28–33 °C (range 15–40 °C), with 3 % (w/v) NaCl (range 2–4 %) and at pH 8.0 (range pH 6.5–8.5). Cells of strain 017 were motile and formed yellow colonies on marine agar 2216. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 017 shared the highest similarity with T7902 (94.4 %). The predominant polar lipids of the novel isolate consisted of phosphatidylglycerol, phosphatidylethanolamine, aminophospholipid and some other unknown lipids. Major cellular fatty acids (>10 %) were C, Cω7 and summed feature 3 (Cω7/iso-C 2-OH), and the sole respiratory lipoquinone was Q-8. The DNA G+C content of strain 017 was 40.2 mol%. Comparative analysis of 16S rRNA gene sequences and phenotypic characterization indicated that strain 017 represents a novel species in a new genus of the family , order , for which the name gen. nov., sp. nov. is proposed. The type strain of is 017 (=KCTC 42584=MCCC 1H00123).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002193
2017-10-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/10/3778.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002193&mimeType=html&fmt=ahah

References

  1. Spring S, Scheuner C, Göker M, Klenk HP. A taxonomic framework for emerging groups of ecologically important marine gammaproteobacteria based on the reconstruction of evolutionary relationships using genome-scale data. Front Microbiol 2015; 6:1–17 [View Article][PubMed]
    [Google Scholar]
  2. Du ZJ, Zhang DC, Liu SN, Chen JX, Tian XL et al. Gilvimarinus chinensis gen. nov., sp. nov., an agar-digesting marine bacterium within the class Gammaproteobacteria isolated from coastal seawater in Qingdao, China. Int J Syst Evol Microbiol 2009; 59:2987–2990 [View Article][PubMed]
    [Google Scholar]
  3. Cheng H, Zhang S, Huo YY, Jiang XW, Zhang XQ et al. Gilvimarinus polysaccharolyticus sp. nov., an agar-digesting bacterium isolated from seaweed, and emended description of the genus Gilvimarinus . Int J Syst Evol Microbiol 2015; 65:562–569 [View Article][PubMed]
    [Google Scholar]
  4. Kouzui H, Tokikawa K, Satomi M, Negoro T, Shimabukuro K et al. Gilvimarinus japonicus sp. nov., a cellulolytic and agarolytic marine bacterium isolated from coastal debris. Int J Syst Evol Microbiol 2016; 66:5417–5423 [View Article][PubMed]
    [Google Scholar]
  5. Ekborg NA, Gonzalez JM, Howard MB, Taylor LE, Hutcheson SW et al. Saccharophagus degradans gen. nov., sp. nov., a versatile marine degrader of complex polysaccharides. Int J Syst Evol Microbiol 2005; 55:1545–1549 [View Article][PubMed]
    [Google Scholar]
  6. Lim JM, Jeon CO, Lee JC, Song SM, Kim KY et al. Marinimicrobium koreense gen. nov., sp. nov. and Marinimicrobium agarilyticum sp. nov., novel moderately halotolerant bacteria isolated from tidal flat sediment in Korea. Int J Syst Evol Microbiol 2006; 56:653–657 [View Article][PubMed]
    [Google Scholar]
  7. Shieh WY, Liu TY, Lin SY, Jean WD, Chen JS. Simiduia agarivorans gen. nov., sp. nov., a marine, agarolytic bacterium isolated from shallow coastal water from Keelung, Taiwan. Int J Syst Evol Microbiol 2008; 58:895–900 [View Article][PubMed]
    [Google Scholar]
  8. Liu QQ, Wang Y, Li J, Du ZJ, Chen GJ. Saccharicrinis carchari sp. nov., isolated from a shark, and emended descriptions of the genus Saccharicrinis and Saccharicrinis fermentans. Int J Syst Evol Microbiol 2014; 64:2204–2209 [View Article][PubMed]
    [Google Scholar]
  9. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  10. Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article][PubMed]
    [Google Scholar]
  11. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  12. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The All-Species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008; 31:241–250 [View Article][PubMed]
    [Google Scholar]
  13. Westram R, Bader K, Prüsse E, Kumar Y, Meier H et al. ARB: A Software Environment for Sequence Data. In De Bruijn FJ. (editor) Handbook of Molecular Microbial Ecology I: Metagenomic and Complementary Approaches Hoboken: John Wiley & Sons, Inc; 2011 pp. 399–406 [Crossref]
    [Google Scholar]
  14. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969 pp. 21–132 [Crossref]
    [Google Scholar]
  15. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  16. Phylip FJ. Phylogeny Inference Package) Version 3.6, Distributed by the Author. Seattle, USA: Department of Genome Sciences, University of Washington; 2005
    [Google Scholar]
  17. Distel DL, Morrill W, Maclaren-Toussaint N, Franks D, Waterbury J. Teredinibacter turnerae gen. nov., sp. nov., a dinitrogen-fixing, cellulolytic, endosymbiotic γ-proteobacterium isolated from the gills of wood-boring molluscs (Bivalvia: Teredinidae). Int J Syst Evol Microbiol 2002; 52:2261–2269 [View Article][PubMed]
    [Google Scholar]
  18. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  19. Dong XZ, Cai MY. Chapter 14. Manual for the Systematic Identification of General Bacteria Beijing: Science Press; 2001 pp. 364–390
    [Google Scholar]
  20. Cowan ST, Steel KJ. Bacterial characters and characterization. In Cowan ST. (editor) Cowan and Steel’s Manual for the Identification of Medical Bacteria Cambridge, UK: Cambridge University Press; 1974
    [Google Scholar]
  21. CLSI Performance Standards for Antimicrobial Susceptibility Testing; 22nd Informational Supplement M100-S22 Wayne, PA: Clinical and Laboratory Standards Institute; 2012
    [Google Scholar]
  22. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002; 4:770–773[PubMed] [Crossref]
    [Google Scholar]
  23. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic Characterization and the Principles of Comparative Systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM. et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: ASM press; 2007 pp. 330–393
    [Google Scholar]
  24. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42:457–469 [View Article]
    [Google Scholar]
  25. Chen MH, Sheu SY, Arun AB, Young CC, Chen CA et al. Pseudoteredinibacter isoporae gen. nov., sp. nov., a marine bacterium isolated from the reef-building coral Isopora palifera. Int J Syst Evol Microbiol 2011; 61:1887–1893 [View Article][PubMed]
    [Google Scholar]
  26. Suarez C, Ratering S, Kramer I, Schnell S. Cellvibrio diazotrophicus sp. nov., a nitrogen-fixing bacteria isolated from the rhizosphere of salt meadow plants and emended description of the genus Cellvibrio. Int J Syst Evol Microbiol 2014; 64:481–486 [View Article][PubMed]
    [Google Scholar]
  27. Mergaert J, Lednická D, Goris J, Cnockaert MC, de Vos P et al. Taxonomic study of Cellvibrio strains and description of Cellvibrio ostraviensis sp. nov., Cellvibrio fibrivorans sp. nov. and Cellvibrio gandavensis sp. nov. Int J Syst Evol Microbiol 2003; 53:465–471 [View Article][PubMed]
    [Google Scholar]
  28. Humphry DR, Black GW, Cummings SP. Reclassification of 'Pseudomonas fluorescens subsp. cellulosa' NCIMB 10462 (Ueda et al. 1952) as Cellvibrio japonicus sp. nov. and revival of Cellvibrio vulgaris sp. nov., nom. rev. and Cellvibrio fulvus sp. nov., nom. rev. Int J Syst Evol Microbiol 2003; 53:393–400 [View Article][PubMed]
    [Google Scholar]
  29. Blackall LL, Hayward AC, Sly LI. Cellulolytic and dextranolytic Gram-negative bacteria: revival of the genus Cellvibrio . J Appl Microbiol 1985; 59:81–97
    [Google Scholar]
  30. Baek K, Choi A, Cho JC. Eionea flava sp. nov., isolated from coastal seawater, and emended description of the genus Eionea . Int J Syst Evol Microbiol 2015; 65:2975–2979 [View Article][PubMed]
    [Google Scholar]
  31. Urios L, Intertaglia L, Lesongeur F, Lebaron P. Eionea nigra gen. nov., sp. nov., a Gammaproteobacterium from the Mediterranean Sea. Int J Syst Evol Microbiol 2011; 61:1677–1681 [View Article][PubMed]
    [Google Scholar]
  32. Iwaki H, Takada K, Hasegawa Y. Maricurvus nonylphenolicus gen. nov., sp. nov., a nonylphenol-degrading bacterium isolated from seawater. FEMS Microbiol Lett 2012; 327:142–147 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002193
Loading
/content/journal/ijsem/10.1099/ijsem.0.002193
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error