1887

Abstract

This study describes three novel xylose-assimilating yeasts, which were isolated from decayed wood collected from Bung Hatta Botanical Garden in West Sumatra and Cibodas Botanic Garden in West Java, or from litter from Eka Karya Bali Botanic Garden in Bali, Indonesia. Phylogenetic analysis was performed based on the sequences of the D1/D2 domains of the large ribosomal subunit (LSU), the small ribosomal subunit (SSU), the internal transcribed spacer (ITS) and elongation factor-1α (), and the three strains were found to represent three novel species belonging to genera or . The morphological, biochemical and physiological characteristics indicated that the strains were distinct from other closely related species. Strains 13Y206 and 14Y196 belonging to the clade are described as the type strains of sp. nov. (type strain 13Y206=NBRC 110202=InaCC Y726; MycoBank MB808598) and sp. nov. (type strain 14Y196=NBRC 111558=InaCC Y1030; MycoBank MB819485). Strain 14Y125 belonging to the clade is described as the type strain of f.a., sp. nov. (type strain 14Y125=NBRC 111553=InaCC Y1026; MycoBank MB819484).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002233
2017-10-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/10/3971.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002233&mimeType=html&fmt=ahah

References

  1. Betts WB, Dart RK, Ball AS, Pedlar SL. Biosynthesis and Structure of lignocellulose. In Betts WB. (editor) Biodegradation: Natural and Synthetic Materials Berlin, Germany: Springer-Verlag; 1991 pp. 139–155
    [Google Scholar]
  2. Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 2002; 83:1–11 [View Article]
    [Google Scholar]
  3. Kurtzman CP, Robnett CJ, Basehoar-Powers E. Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen. nov., Lindnera gen. nov. and Wickerhamomyces gen. nov. FEMS Yeast Res 2008; 8:939–954 [View Article][PubMed]
    [Google Scholar]
  4. Imanishi Y, Yamazaki A, Nakase T. A new Barnettozyma species forming hat-shaped ascospores isolated from soil in Japan. J Gen Appl Microbiol 2010; 56:447–453[PubMed] [Crossref]
    [Google Scholar]
  5. Yurkov A, Schäfer AM, Begerow D. Barnettozyma vustinii A. Yurkov, A.M. Schäfer & Begerow, sp. nov. Fungal Planet 38. Persoonia 2009; 23:188–189
    [Google Scholar]
  6. Polburee P, Yongmanitchai W, Ohashi T, Fujiyama K, Limtong S. Barnettozyma siamensis f.a., sp. nov., a lipid-accumulating ascomycete yeast species. Int J Syst Evol Microbiol 2014; 64:3053–3057 [View Article][PubMed]
    [Google Scholar]
  7. Kurtzman CP, Fell JW, Boekhout T, Robert V. Methods for isolation, phenotypic characterization and maintenance of yeasts. In The Yeasts, A Taxonomic Study, 5th ed. 2011 pp. 88–110
    [Google Scholar]
  8. Limtong S, Nitiyon S, Kaewwichian R, Jindamorakot S, Am-In S et al. Wickerhamomyces xylosica sp. nov. and Candida phayaonensis sp. nov., two xylose-assimilating yeast species from soil. Int J Syst Evol Microbiol 2012; 62:2786–2792 [View Article][PubMed]
    [Google Scholar]
  9. James SA, Barriga EJ, Barahona PP, Harrington TC, Lee CF et al. Wickerhamomyces arborarius f.a., sp. nov., an ascomycetous yeast species found in arboreal habitats on three different continents. Int J Syst Evol Microbiol 2014; 64:1057–1061 [View Article][PubMed]
    [Google Scholar]
  10. Groenewald M, Robert V, Smith MT. Five novel Wickerhamomyces- and Metschnikowia-related yeast species, Wickerhamomyces chaumierensis sp. nov., Candida pseudoflosculorum sp. nov., Candida danieliae sp. nov., Candida robnettiae sp. nov. and Candida eppingiae sp. nov., isolated from plants. Int J Syst Evol Microbiol 2011; 61:2015–2022 [View Article][PubMed]
    [Google Scholar]
  11. Limtong S, Yongmanitchai W, Kawasaki H, Fujiyama K. Wickerhamomyces edaphicus sp. nov. and Pichia jaroonii sp. nov., two ascomycetous yeast species isolated from forest soil in Thailand. FEMS Yeast Res 2009; 9:504–510 [View Article][PubMed]
    [Google Scholar]
  12. Hui FL, Chen L, Chu XY, Niu QH, Ke T. Wickerhamomyces mori sp. nov., an anamorphic yeast species found in the guts of wood-boring insect larvae. Int J Syst Evol Microbiol 2013; 63:1174–1178 [View Article][PubMed]
    [Google Scholar]
  13. Nagatsuka Y, Kawasaki H, Seki T. Pichia myanmarensis sp. nov., a novel cation-tolerant yeast isolated from palm sugar in Myanmar. Int J Syst Evol Microbiol 2005; 55:1379–1382 [View Article][PubMed]
    [Google Scholar]
  14. Shin KS, Bae KS, Lee KH, Park DS, Kwon GS et al. Wickerhamomyces ochangensis sp. nov., an ascomycetous yeast isolated from the soil of a potato field. Int J Syst Evol Microbiol 2011; 61:2543–2546 [View Article][PubMed]
    [Google Scholar]
  15. Nasr S, Nguyen TDH, Soudi RM, Fazeli SAS, Sipiczki M. Wickerhamomyces orientalis f.a., sp. nov.: an ascomycetous yeast species belonging to the Wickerhamomyces clade. Int J Syst Evol Mirobiol 2016; 66:2534–2539 [Crossref]
    [Google Scholar]
  16. de García V, Brizzio S, Libkind D, Rosa CA, van Broock M. Wickerhamomyces patagonicus sp. nov., an ascomycetous yeast species from Patagonia, Argentina. Int J Syst Evol Microbiol 2010; 60:1693–1696 [View Article][PubMed]
    [Google Scholar]
  17. Rosa CA, Morais PB, Lachance MA, Santos RO, Melo WG et al. Wickerhamomyces queroliae sp. nov. and Candida jalapaonensis sp. nov., two yeast species isolated from Cerrado ecosystem in North Brazil. Int J Syst Evol Microbiol 2009; 59:1232–1236 [View Article][PubMed]
    [Google Scholar]
  18. Ninomiya S, Mikata K, Kajimura H, Kawasaki H. Two novel ascomycetous yeast species, Wickerhamomyces scolytoplatypi sp. nov. and Cyberlindnera xylebori sp. nov., isolated from ambrosia beetle galleries. Int J Syst Evol Microbiol 2013; 63:2706–2711 [View Article][PubMed]
    [Google Scholar]
  19. Kaewwichian R, Kawasaki H, Limtong S. Wickerhamomyces siamensis sp. nov., a novel yeast species isolated from the phylloplane in Thailand. Int J Syst Evol Microbiol 2013; 63:1568–1573 [View Article][PubMed]
    [Google Scholar]
  20. Masiulionis VE, Pagnocca FC. Wickerhamomyces spegazzinii sp. nov., an ascomycetous yeast isolated from the fungus garden of Acromyrmex lundii nest (Hymenoptera: Formicidae). Int J Syst Evol Microbiol 2016; 66:2141–2145 [View Article][PubMed]
    [Google Scholar]
  21. Francesca N, Carvalho C, Almeida PM, Sannino C, Settanni L et al. Wickerhamomyces sylviae f.a., sp. nov., an ascomycetous yeast species isolated from migratory birds. Int J Syst Evol Microbiol 2013; 63:4824–4830 [View Article][PubMed]
    [Google Scholar]
  22. Nakase T, Jindamorakot S, Am-In S, Ninomiya S, Kawasaki H. Wickerhamomyces tratensis sp. nov. and Candida namnaoensis sp. nov., two novel ascomycetous yeast species in the Wickerhamomyces clade found in Thailand. J Gen Appl Microbiol 2012; 58:145–152[PubMed] [Crossref]
    [Google Scholar]
  23. Kobayashi R, Kanti A, Kawasaki H. Pichia chibodasensis sp. nov., isolated in Indonesia. Int J Syst Evol Microbiol 2017; 67:1024–1027 [View Article][PubMed]
    [Google Scholar]
  24. O’Donnell K. Fusarium and its near relatives. In Reynolds DR, Taylor JW. (editors) The Fungal Holomorph: Mitotic and Plemorphic Speciation in Fingal Systematics Wallingford, UK: CAB International; 1993 pp. 225–233
    [Google Scholar]
  25. Kurtzman CP, Robnett CJ. Phylogenetic relationships among yeasts of the 'Saccharomyces complex' determined from multigene sequence analyses. FEMS Yeast Res 2003; 3:417–432[PubMed] [Crossref]
    [Google Scholar]
  26. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25:3389–3402[PubMed] [Crossref]
    [Google Scholar]
  27. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  28. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120[PubMed] [Crossref]
    [Google Scholar]
  29. Nei M, Kumar S. Chapter 2: Evolutionary change of amino acid sequences. In: Molecular Evolution and Phylogenetics 2000 pp. 17–24
    [Google Scholar]
  30. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  31. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376[PubMed] [Crossref]
    [Google Scholar]
  32. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [Crossref]
    [Google Scholar]
  33. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  34. Yamazaki A, Kawasaki H. Lipomyces chichibuensis sp. nov., isolated in Japan, and reidentification of the type strains of Lipomyces kononenkoae and Lipomyces spencermartinsiae . Int J Syst Evol Microbiol 2014; 64:2566–2572 [View Article][PubMed]
    [Google Scholar]
  35. Mikata K, Nakase T. Surface structure of ascospores of genus Nadosonia sydow . Microbial Cult Coll 1997; 13:97–102
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002233
Loading
/content/journal/ijsem/10.1099/ijsem.0.002233
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error