- Home
- Publications
- International Journal of Systematic and Evolutionary Microbiology
- Volume 67, Issue 10
- Article

f Polaribacter insulae sp. nov., isolated from a tidal flat
- Authors: Sooyeon Park1 , Sun Young Yoon1 , Ji-Min Park1 , Jung-Hoon Yoon1
-
- VIEW AFFILIATIONS
-
1 Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
- *Correspondence: Jung-Hoon Yoon [email protected]
- First Published Online: 12 September 2017, International Journal of Systematic and Evolutionary Microbiology 67: 4013-4019, doi: 10.1099/ijsem.0.002236
- Subject: New taxa - Bacteroidetes
- Received:
- Accepted:
- Cover date:




Polaribacter insulae sp. nov., isolated from a tidal flat, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/ijsem/67/10/4013_ijsem002236-1.gif
-
A Gram-stain-negative, aerobic, non-motile and ovoid or rod-shaped bacterial strain, designated OITF-22T, was isolated from a tidal flat of Oido, an island of South Korea, and subjected to a polyphasic taxonomic study. Strain OITF-22T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 2.0–3.0 % (w/v) NaCl. The phylogenetic trees based on 16S rRNA gene sequences showed that strain OITF-22T fell within the clade comprising the type strains of Polaribacter species. Strain OITF-22T exhibited 16S rRNA gene sequence similarity values of 97.2–99.4 % to the type strains of Polaribacter vadi , P. haliotis , P. atrinae , P. dokdonensis , P. litorisediminis, P. reichenbachii , P. irgensii and P. marinaquae , and of 93.0–96.9 % to the type strains of the other Polaribacter species. Strain OITF-22T contained MK-6 as the predominant menaquinone and iso-C15 : 0 and iso-C15 : 0 3-OH as the major fatty acids. The major polar lipids detected in strain OITF-22T were phosphatidylethanolamine and one unidentified lipid. The DNA G+C content of strain OITF-22T was 32.3 mol% and its DNA–DNA relatedness values with the type strains of the eight phylogenetically most closely related Polaribacter species were 9–32 %. Differential phenotypic properties, together with phylogenetic and genetic distinctiveness, revealed that strain OITF-22T is separated from recognized species of the genus Polaribacter . On the basis of the data presented, strain OITF-22T is considered to represent a novel species of the genus Polaribacter , for which the name Polaribacter insulae sp. nov. is proposed. The type strain is OITF-22T (=KCTC 52658T=NBRC 112706T).
-
The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain OITF-22T is KY694984.
-
Two supplementary figures are available with the online Supplementary Material.
- Keyword(s): novel species, Polaribacter insulae, polyphasic taxonomy, tidal flat
© 2017 IUMS | Published by the Microbiology Society
-
1. Gosink JJ, Woese CR, Staley JT. Polaribacter gen. nov., with three new species, P. irgensii sp. nov., P. franzmannii sp. nov. and P. filamentus sp. nov., gas vacuolate polar marine bacteria of the Cytophaga-Flavobacterium-Bacteroides group and reclassification of 'Flectobacillus glomeratus' as Polaribacter glomeratus comb. nov. Int J Syst Bacteriol 1998; 48: 223– 235 [CrossRef] [PubMed]
-
2. Mcguire AJ, Franzmann PD, Mcmeekin TA. Flectobacillus glomeratus sp. nov., a curved, nonmotile, pigmented bacterium isolated from Antarctic marine environments. Syst Appl Microbiol 1987; 9: 265– 272 [CrossRef]
-
3. Parte AC. LPSN–list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42: D613– D616 [CrossRef] [PubMed]
-
4. Wang Y, Gao L, Ming H, Zhang P, Zhu W et al. Polaribacter marinaquae sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2016; 66: 4594– 4599 [CrossRef] [PubMed]
-
5. Kim YO, Park IS, Park S, Nam BH, Park JM et al. Polaribacter haliotis sp. nov., isolated from the gut of abalone Haliotis discus hannai. Int J Syst Evol Microbiol 2016; 66: 5562– 5567 [CrossRef] [PubMed]
-
6. Kim E, Shin SK, Choi S, Yi H. Polaribacter vadi sp. nov., isolated from a marine gastropod. Int J Syst Evol Microbiol 2017; 67: 144– 147 [CrossRef] [PubMed]
-
7. Kang H, Kim H, Joung Y, Joh K. Polaribacter lacunae sp. nov., isolated from a lagoon. Int J Syst Evol Microbiol 2016; 67: 681– 686 [CrossRef] [PubMed]
-
8. Park S, Yoon SY, Ha MJ, Yoon JH. Polaribacter litorisediminis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017; 67: 2036– 2042 [CrossRef] [PubMed]
-
9. Nedashkovskaya OI, Kim SB, Lysenko AM, Kalinovskaya NI, Mikhailov VV et al. Polaribacter butkevichii sp. nov., a novel marine mesophilic bacterium of the family Flavobacteriaceae. Curr Microbiol 2005; 51: 408– 412 [CrossRef] [PubMed]
-
10. Yoon JH, Kang SJ, Oh TK. Polaribacter dokdonensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2006; 56: 1251– 1255 [CrossRef] [PubMed]
-
11. Lee YS, Lee DH, Kahng HY, Sohn SH, Jung JS. Polaribacter gangjinensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2011; 61: 1425– 1429 [CrossRef] [PubMed]
-
12. Fukui Y, Abe M, Kobayashi M, Saito H, Oikawa H et al. Polaribacter porphyrae sp. nov., isolated from the red alga Porphyra yezoensis, and emended descriptions of the genus Polaribacter and two Polaribacter species. Int J Syst Evol Microbiol 2013; 63: 1665– 1672 [CrossRef] [PubMed]
-
13. Kim BC, Oh HW, Kim H, Park DS, Hong SG et al. Polaribacter sejongensis sp. nov., isolated from Antarctic soil, and emended descriptions of the genus Polaribacter, Polaribacter butkevichii and Polaribacter irgensii. Int J Syst Evol Microbiol 2013; 63: 4000– 4005 [CrossRef] [PubMed]
-
14. Nedashkovskaya OI, Kukhlevskiy AD, Zhukova NV. Polaribacter reichenbachii sp. nov.: a new marine bacterium associated with the green alga Ulva fenestrata. Curr Microbiol 2013; 66: 16– 21 [CrossRef] [PubMed]
-
15. Hyun DW, Shin NR, Kim MS, Kim PS, Jung MJ et al. Polaribacter atrinae sp. nov., isolated from the intestine of a comb pen shell, Atrina pectinata. Int J Syst Evol Microbiol 2014; 64: 1654– 1661 [CrossRef] [PubMed]
-
16. Li H, Zhang XY, Liu C, Lin CY, Xu Z et al. Polaribacter huanghezhanensis sp. nov., isolated from Arctic fjord sediment, and emended description of the genus Polaribacter. Int J Syst Evol Microbiol 2014; 64: 973– 978 [CrossRef] [PubMed]
-
17. Park S, Park JM, Jung YT, Lee KC, Lee JS et al. Polaribacter marinivivus sp. nov., a member of the family Flavobacteriaceae isolated from seawater. Antonie van Leeuwenhoek 2014; 106: 1139– 1146 [CrossRef] [PubMed]
-
18. Park S, Park JM, Jung YT, Lee KH, Yoon JH. Polaribacter undariae sp. nov., isolated from a brown alga reservoir. Int J Syst Evol Microbiol 2015; 65: 1679– 1685 [CrossRef] [PubMed]
-
19. Park S, Won SM, Kim H, Park DS, Yoon JH. Aestuariivita boseongensis gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014; 64: 2969– 2974 [CrossRef] [PubMed]
-
20. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50: 1861– 1868 [CrossRef] [PubMed]
-
21. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19: 1– 67
-
22. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993; [Crossref]
-
23. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001; 51: 1997– 2006 [CrossRef] [PubMed]
-
24. Reichenbach H. The order Cytophagales. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH. (editors) The Prokaryotes, A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed. New York: Springer; 1992; pp. 3631– 3675
-
25. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52: 1049– 1070 [CrossRef] [PubMed]
-
26. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963; 85: 1183– 1184 [PubMed]
-
27. Yoon J-H, Kim H, Kim S-B, Kim H-J, Kim WY et al. Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 1996; 46: 502– 505 [CrossRef]
-
28. Yoon J-H, Lee ST, Kim S-B, Kim WY, Goodfellow M et al. Restriction fragment length polymorphism analysis of PCR-Amplified 16S ribosomal DNA for rapid identification of Saccharomonospora strains. Int J Syst Bacteriol 1997; 47: 111– 114 [CrossRef]
-
29. Yoon JH, Kim IG, Shin DY, Kang KH, Park YH. Microbulbifer salipaludis sp. nov., a moderate halophile isolated from a Korean salt marsh. Int J Syst Evol Microbiol 2003; 53: 53– 57 [CrossRef] [PubMed]
-
30. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39: 224– 229 [CrossRef]
-
31. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19: 161– 207 [Crossref]
-
32. Bernardet JF. Family I. Flavobacteriaceae Reichenbach 1992. In Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ. et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 4 New York: Springer; 2011; pp. 106– 111
-
33. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
-
34. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
-
35. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons; 1994; pp. 121– 161
-
36. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25: 125– 128 [CrossRef]
-
37. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37: 463– 464 [CrossRef]
-
38. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44: 846– 849 [CrossRef]
-
39. Montero-Calasanz MC, Göker M, Rohde M, Spröer C, Schumann P et al. Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium. Int J Syst Evol Microbiol 2013; 63: 4386– 4395 [CrossRef] [PubMed]

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/ijsem/10.1099/ijsem.0.002236dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/ijsem/10.1099/ijsem.0.002236dcterms_title,dcterms_subject-pub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....