1887

Abstract

A novel Gram-stain-positive, motile, endospore-forming, rod-shaped bacterium, designated strain NEAU-3TGS17, was isolated from the head of an ant (). The isolate grew at 0–35 °C (optimum 28–30 °C), at pH 6.0–11.0 (optimum pH 7.0–8.0) and with 0–6 % (w/v) NaCl (optimum 0 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NEAU-3TGS17 belonged to the genus Sequence similarities between strain NEAU-3TGS17 and members of the genus with validly published names DSM 11706, DSM 5, DSM 11713 and NBRC 110600) were 98.4–99.1 %. DNA–DNA relatedness values between strain NEAU-3TGS17 and its closest relatives were below 70 %. The major cellular fatty acids (>5 %) were iso-C, anteiso-C, C and iso-C. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The cell-wall peptidoglycan type was A4β with ornithine as the diamino acid and the predominant menaquinones were MK-8 and some MK-7. The DNA G+C content was 35.8 mol%. On the basis of phenotypic data and phylogenetic inference, strain NEAU-3TGS17 was classified as representing a novel species in the genus , for which the name sp. nov. is proposed. The type strain is NEAU-3TGS17 (=DSM 100484=CGMCC 1.15308).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002315
2017-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/11/4462.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002315&mimeType=html&fmt=ahah

References

  1. Katz L, Baltz RH. Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol 2016; 43:155–176 [View Article][PubMed]
    [Google Scholar]
  2. Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 2012; 75:311–335 [View Article][PubMed]
    [Google Scholar]
  3. Kumar V, Naik B, Gusain O, Bisht GS. An actinomycete isolate from solitary wasp mud nest having strong antibacterial activity and kills the Candida cells due to the shrinkage and the cytosolic loss. Front Microbiol 2014; 5:446 [View Article][PubMed]
    [Google Scholar]
  4. Berasategui A, Shukla S, Salem H, Kaltenpoth M. Potential applications of insect symbionts in biotechnology. Appl Microbiol Biotechnol 2016; 100:1567–1577 [View Article][PubMed]
    [Google Scholar]
  5. Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A. Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 2014; 27:30–37 [View Article][PubMed]
    [Google Scholar]
  6. Subramani R, Aalbersberg W. Culturable rare actinomycetes: diversity, isolation and marine natural product discovery. Appl Microbiol Biotechnol 2013; 97:9291–9321 [View Article][PubMed]
    [Google Scholar]
  7. Beemelmanns C, Guo H, Rischer M, Poulsen M. Natural products from microbes associated with insects. Beilstein J Org Chem 2016; 12:314–327 [View Article][PubMed]
    [Google Scholar]
  8. Kim SH, Ko H, Bang HS, Park SH, Kim DG et al. Coprismycins A and B, neuroprotective phenylpyridines from the dung beetle-associated bacterium, Streptomyces sp. Bioorg Med Chem Lett 2011; 21:5715–5718 [View Article][PubMed]
    [Google Scholar]
  9. Um S, Fraimout A, Sapountzis P, Oh DC, Poulsen M. The fungus-growing termite Macrotermes natalensis harbors bacillaene-producing Bacillus sp. that inhibit potentially antagonistic fungi. Sci Rep 2013; 3:3250 [View Article][PubMed]
    [Google Scholar]
  10. Krishnamurthi S, Ruckmani A, Pukall R, Chakrabarti T. Psychrobacillus gen. nov. and proposal for reclassification of Bacillus insolitus Larkin & Stokes, 1967, B. psychrotolerans Abd-El Rahman et al., 2002 and B. psychrodurans Abd-El Rahman et al., 2002 as Psychrobacillus insolitus comb. nov., Psychrobacillus psychrotolerans comb. nov. and Psychrobacillus psychrodurans comb. nov. Syst Appl Microbiol 2010; 33:367–373 [View Article][PubMed]
    [Google Scholar]
  11. Pham VH, Jeong SW, Kim J. Psychrobacillus soli sp. nov., capable of degrading oil, isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2015; 65:3046–3052 [View Article][PubMed]
    [Google Scholar]
  12. Logan NA, Berge O, Bishop AH, Busse HJ, de Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59:2114–2121 [View Article][PubMed]
    [Google Scholar]
  13. Murray RGE, Doetsch RN, Robinow CF. Determinative and cytological light microscopy. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington: American Society for Microbiology; 1994 pp. 21–41
    [Google Scholar]
  14. Leifson E. Atlas of Bacterial Flagellation London: Academic Press; 1960 [Crossref]
    [Google Scholar]
  15. Skerman VBD. A Guide to the Identification of the Genera of Bacteria, 2nd ed. Baltimore: Williams & Wilkins; 1967
    [Google Scholar]
  16. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  17. Gregersen T. Rapid method for distinction of gram-negative from gram-positive bacteria. European J Appl Microbiol Biotechnol 1978; 5:123–127 [View Article]
    [Google Scholar]
  18. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 1982; 128:1959–1968
    [Google Scholar]
  19. Xie QY, Lin HP, Li L, Brown R, Goodfellow M et al. Verrucosispora wenchangensis sp. nov., isolated from mangrove soil. Antonie van Leeuwenhoek 2012; 102:1–7 [View Article][PubMed]
    [Google Scholar]
  20. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: a Laboratory Manual, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1989
    [Google Scholar]
  21. Woese CR, Gutell R, Gupta R, Noller HF. Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol Rev 1983; 47:621–669[PubMed]
    [Google Scholar]
  22. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  24. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376[PubMed] [Crossref]
    [Google Scholar]
  25. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [Crossref]
    [Google Scholar]
  26. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  27. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983 [Crossref]
    [Google Scholar]
  28. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526[PubMed]
    [Google Scholar]
  29. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  30. Mandel M, Marmur J. Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 1968; 12:195–206 [Crossref]
    [Google Scholar]
  31. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142[PubMed] [Crossref]
    [Google Scholar]
  32. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4:184–192 [View Article][PubMed]
    [Google Scholar]
  33. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [Crossref]
    [Google Scholar]
  34. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985 pp. 267–284
    [Google Scholar]
  35. Wu C, Lu X, Qin M, Wang Y, Ruan J. Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 1989; 16:176–178
    [Google Scholar]
  36. Mckerrow J, Vagg S, Mckinney T, Seviour EM, Maszenan AM et al. A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of gram-positive bacteria. Lett Appl Microbiol 2000; 30:178–182 [View Article][PubMed]
    [Google Scholar]
  37. Pan T, He H, Li C, Zhao J, Zhang Y et al. Streptomyces daqingensis sp. nov., isolated from saline-alkaline soil. Int J Syst Evol Microbiol 2016; 66:1358–1363 [View Article][PubMed]
    [Google Scholar]
  38. Xiang W, Liu C, Wang X, Du J, Xi L et al. Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 2011; 61:1165–1169 [View Article][PubMed]
    [Google Scholar]
  39. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation ofapproaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [Crossref]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002315
Loading
/content/journal/ijsem/10.1099/ijsem.0.002315
Loading

Data & Media loading...

Supplements

Supplementary File 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error