- Home
- Publications
- International Journal of Systematic and Evolutionary Microbiology
- Volume 67, Issue 11
- Article

f Sphingobacterium humi sp. nov., isolated from soil
- Authors: Yunhee Lee1,† , Hyun Mi Jin2,† , Hye Su Jung1 , Che Ok Jeon1
-
- VIEW AFFILIATIONS
-
1 1Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea 2 2Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources, Gyeongsangbuk-do 37242, Republic of Korea
- *Correspondence: Che Ok Jeon [email protected]
- First Published Online: 25 September 2017, International Journal of Systematic and Evolutionary Microbiology 67: 4632-4638, doi: 10.1099/ijsem.0.002345
- Subject: New taxa - Bacteroidetes
- Received:
- Accepted:
- Cover date:




Sphingobacterium humi sp. nov., isolated from soil, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/ijsem/67/11/4632_ijsem002345-1.gif
-
A Gram-stain-negative, facultatively aerobic bacterium, designated strain D1T, was isolated from soil in South Korea. Cells of strain D1T were non-motile rods with oxidase- and catalase-positive activities. Growth was observed at 15–40 °C (optimum, 30–37 °C), at pH 5.5–9.0 (optimum, pH 7.0–8.0) and in the presence of 0.0–5.0 % (w/v) NaCl (optimum, 0.0–1.0 %). The only respiratory quinone detected was menaquinone 7 (MK-7), and iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (comprising C16 : 1ω7c/C16 : 1ω6c) were identified as the major fatty acids. Phosphatidylethanolamine was the major polar lipid, and two unidentified glycophospholipids and four unidentified lipids were also detected as minor polar lipids. Sphingolipids, a typical chemotaxonomic feature of the genus Sphingobacterium , were detected. The G+C content of the genomic DNA was 43.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain D1T formed a phyletic lineage with Sphingobacterium hotanense XH4T within the genus Sphingobacterium . Strain D1T was most closely related to S. hotanense XH4T (98.1 % 16S rRNA gene sequence similarity) and Sphingobacterium cellulitidis R-53603T (97.2 %), and the DNA–DNA relatedness level between strain D1T and the type strain of S. cellulitidis was 43.1±0.7 %. Based on the phenotypic, chemotaxonomic and molecular features, strain D1T clearly represents a novel species of the genus Sphingobacterium , for which the name Sphingobacterium humi sp. nov. is proposed. The type strain is D1T (=KACC 18595T=JCM 31225T).
-
†
These authors contributed equally to this work.
-
The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain D1T is KU668559.
-
One supplementary table and three supplementary figures are available with the online Supplementary Material.
- Keyword(s): Bacteroidetes, Sphingobacterium humi, species novel, new taxa
© 2017 IUMS | Published by the Microbiology Society
-
1. Yabuuchi E, Kaneko T, Yano I, Moss CW, Miyoshi N. Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting gram-negative rods in CDC groups IIK-2 and IIb. Int J Syst Bacteriol 1983; 33: 580– 598 [CrossRef]
-
2. Holmes B, Weaver RE, Steigerwalt AG, Brenner DJ. A taxonomic study of Flavobacterium spiritivorum and Sphingobacterium mizutae: proposal of Flavobacterium yabuuchiae sp. nov. and Flavobacterium mizutaii comb. nov. Int J Syst Bacteriol 1988; 38: 348– 353 [CrossRef]
-
3. Takeuchi M, Yokota A. Proposals of Sphingobacterium faecium sp. nov., Sphingobacterium piscium sp. nov., Sphingobacterium heparinum comb. nov., sphingobacterium thalpophilum comb. nov. and two genospecies of the genus Sphingobacterium, and synonymy of Flavobacterium yabuuchiae and Sphingobacterium spiritivorum. J Gen Appl Microbiol 1992; 38: 465– 482 [CrossRef]
-
4. Shivaji S, Ray MK, Shyamala Rao N, Saisree L, Jagannadham MV et al. Sphingobacterium antarcticus sp. nov., a psychrotrophic bacterium from the soils of Schirmacher Oasis, Antarctica. Int J Syst Bacteriol 1992; 42: 102– 106 [CrossRef]
-
5. Steyn PL, Segers P, Vancanneyt M, Sandra P, Kersters K et al. Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 1998; 48: 165– 177 [CrossRef] [PubMed]
-
6. Farfán M, Montes MJ, Marqués AM. Reclassification of Sphingobacterium antarcticum Shivaji et al. 1992 as Pedobacter antarcticus comb. nov. and Pedobacter piscium (Takeuchi and Yokota 1993) Steyn et al. 1998 as a later heterotypic synonym of Pedobacter antarcticus. Int J Syst Evol Microbiol 2014; 64: 863– 868 [CrossRef] [PubMed]
-
7. Wauters G, Janssens M, de Baere T, Vaneechoutte M, Deschaght P. Isolates belonging to CDC group II-i belong predominantly to Sphingobacterium mizutaii Yabuuchi et al. 1983: emended descriptions of S. mizutaii and of the genus Sphingobacterium. Int J Syst Evol Microbiol 2012; 62: 2598– 2601 [CrossRef] [PubMed]
-
8. Fu YS, Hussain F, Habib N, Khan IU, Chu X et al. Sphingobacteriumsoli sp. nov., isolated from soil. Int J Syst Evol Microbiol 2017; 67: 2284– 2288 [CrossRef] [PubMed]
-
9. Xu L, Sun JQ, Wang LJ, Gao ZW, Sun LZ et al. Sphingobacterium alkalisoli sp. nov., isolated from a saline-alkaline soil. Int J Syst Evol Microbiol 2017; 67: 1943– 1948 [CrossRef] [PubMed]
-
10. Huys G, Purohit P, Tan CH, Snauwaert C, De Vos P et al. Sphingobacterium cellulitidis sp. nov., isolated from clinical and environmental sources. Int J Syst Evol Microbiol 2017; 67: 1415– 1421 [CrossRef] [PubMed]
-
11. Wang X, Zhang CF, Yu X, Hu G, Yang HX et al. Sphingobacterium chuzhouense sp. nov., isolated from farmland soil. Int J Syst Evol Microbiol 2016; 66: 4968– 4974 [CrossRef] [PubMed]
-
12. Li Y, Song LM, Guo MW, Wang LF, Liang WX. Sphingobacterium populi sp. nov., isolated from bark of Populus × euramericana. Int J Syst Evol Microbiol 2016; 66: 3456– 3462 [CrossRef] [PubMed]
-
13. Siddiqi MZ, Muhammad Shafi S, Choi KD, Im WT, Aslam Z. Sphingobacterium jejuense sp. nov., with ginsenoside-converting activity, isolated from compost. Int J Syst Evol Microbiol 2016; 66: 4433– 4439 [CrossRef] [PubMed]
-
14. Lai WA, Hameed A, Liu YC, Hsu YH, Lin SY et al. Sphingobacterium cibi sp. nov., isolated from the food-waste compost and emended descriptions of Sphingobacterium spiritivorum (Holmes et al. 1982) Yabuuchi et al. 1983 and Sphingobacterium thermophilum Yabe et al. 2013. Int J Syst Evol Microbiol 2016; 66: 5336– 5344 [CrossRef] [PubMed]
-
15. Sun JQ, Liu M, Wang XY, Xu L, Wu XL. Sphingobacterium suaedae sp. nov., isolated from the rhizosphere soil of Suaeda corniculata. Int J Syst Evol Microbiol 2015; 65: 4508– 4513 [CrossRef] [PubMed]
-
16. Jeong SH, Jin HM, Lee HJ, Jeon CO. Altererythrobacter gangjinensis sp. nov., a marine bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2013; 63: 971– 976 [CrossRef] [PubMed]
-
17. Kim JM, Le NT, Chung BS, Park JH, Bae JW et al. Influence of soil components on the biodegradation of benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes by the newly isolated bacterium Pseudoxanthomonas spadix BD-a59. Appl Environ Microbiol 2008; 74: 7313– 7320 [CrossRef] [PubMed]
-
18. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
-
19. Nawrocki EP, Eddy SR. Query-dependent banding (QDB) for faster RNA similarity searches. PLoS Comput Biol 2007; 3: e56 [CrossRef] [PubMed]
-
20. Felsenstein J. Phylip (Phylogeny Inference Package), Version 3.6a Seattle, WA: Department of Genetics, University of Washington; 2002
-
21. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30: 1312– 1313 [CrossRef] [PubMed]
-
22. Chang HW, Nam YD, Jung MY, Kim KH, Roh SW et al. Statistical superiority of genome-probing microarrays as genomic DNA-DNA hybridization in revealing the bacterial phylogenetic relationship compared to conventional methods. J Microbiol Methods 2008; 75: 523– 530 [CrossRef] [PubMed]
-
23. Stackebrandt E, Goebel BM. Taxonomic note: a place for dna-dna reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44: 846– 849 [CrossRef]
-
24. Gomori G. Preparation of buffers for use in enzyme studies. In Colowick SP, Kaplan NO. (editors) Methods in Enzymology New York: Academic Press; 1955; pp. 138– 146
-
25. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52: 1049– 1070 [CrossRef] [PubMed]
-
26. Lányi B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19: 1– 67
-
27. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P. (editor) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp. 607– 654
-
28. Xiao T, He X, Cheng G, Kuang H, Ma X et al. Sphingobacterium hotanense sp. nov., isolated from soil of a Populus euphratica forest, and emended descriptions of Sphingobacterium daejeonense and Sphingobacterium shayense. Int J Syst Evol Microbiol 2013; 63: 815– 820 [CrossRef] [PubMed]
-
29. Schmidt VS, Wenning M, Scherer S. Sphingobacterium lactis sp. nov. and Sphingobacterium alimentarium sp. nov., isolated from raw milk and a dairy environment. Int J Syst Evol Microbiol 2012; 62: 1506– 1511 [CrossRef] [PubMed]
-
30. Choi HA, Lee SS. Sphingobacterium kyonggiense sp. nov., isolated from chloroethene-contaminated soil, and emended descriptions of Sphingobacterium daejeonense and Sphingobacterium mizutaii. Int J Syst Evol Microbiol 2012; 62: 2559– 2564 [CrossRef] [PubMed]
-
31. Kim KH, Ten LN, Liu QM, Im WT, Lee ST. Sphingobacterium daejeonense sp. nov., isolated from a compost sample. Int J Syst Evol Microbiol 2006; 56: 2031– 2036 [CrossRef] [PubMed]
-
32. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
-
33. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27: 104– 117 [CrossRef]
-
34. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002; 4: 770– 773 [PubMed] [Crossref]
-
35. Ahmed I, Ehsan M, Sin Y, Paek J, Khalid N et al. Sphingobacterium pakistanensis sp. nov., a novel plant growth promoting rhizobacteria isolated from rhizosphere of Vigna mungo. Antonie van Leeuwenhoek 2014; 105: 325– 333 [CrossRef] [PubMed]
-
36. Lee DH, Hur JS, Kahng HY. Sphingobacterium cladoniae sp. nov., isolated from lichen, Cladonia sp., and emended description of Sphingobacterium siyangense. Int J Syst Evol Microbiol 2013; 63: 755– 760 [CrossRef] [PubMed]

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/ijsem/10.1099/ijsem.0.002345dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/ijsem/10.1099/ijsem.0.002345dcterms_title,dcterms_subject-pub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....