- Home
- Publications
- International Journal of Systematic and Evolutionary Microbiology
- Volume 67, Issue 11
- Article

f Parapedobacter defluvii sp. nov., isolated from the sewage treatment packing of a coking chemical plant
- Authors: Lan Yang1,2 , Yun-Hao Wang1,2 , Hai-Zhen Zhu1,2 , Jiang-Baota Muhadesi1,2 , Bao-Jun Wang1 , Shuang-Jiang Liu1,2,3 , Cheng-Ying Jiang1,2,3
-
- VIEW AFFILIATIONS
-
1 1State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China 2 2University of Chinese Academy of Sciences, Beijing 100049, PR China 3 3RCEECAS Joint-Lab of Microbial Technology for Environmental Science, Beijing, PR China
- *Correspondence: Shuang-Jiang Liu [email protected], Cheng-Ying Jiang [email protected]
- First Published Online: 06 October 2017, International Journal of Systematic and Evolutionary Microbiology 67: 4698-4703, doi: 10.1099/ijsem.0.002360
- Subject: New taxa - Bacteroidetes
- Received:
- Accepted:
- Cover date:




Parapedobacter defluvii sp. nov., isolated from the sewage treatment packing of a coking chemical plant, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/ijsem/67/11/4698_ijsem002360-1.gif
-
Strain WY-1T, a Gram-stain-negative, non-spore-forming, rod-shaped, non-motile bacterium, was isolated from the sewage treatment packing of a coking chemical plant. Strain WY-1T grew over a temperature range of 15–45 °C (optimum, 30–37 °C), a pH range of 5.5–11.0 (optimum, pH 6.5–7.0) and an NaCl concentration range of 0–3 % (w/v; optimum, 0 %). 16S rRNA gene sequence analysis showed that strain WY-1T was closely related to Parapedobacter indicus RK1T with the highest sequence similarity of 96.0 %. The predominant cellular fatty acids of the novel strain were iso-C15 : 0, summed feature 3(C16 : 1ω6c and/or C16 : 1ω7c), iso-C17 : 0 3-OH, iso-C17 : 1ω9c, iso-C15 : 0 3-OH and C16 : 0. The respiratory quinone of the cells was menaquinone 7 (MK-7). The main polar lipid was phosphatidylethanolamine, an unidentified phospholipid, two unidentified aminolipids and two unknown lipids. The G+C content of the DNA was 47.1 mol%. Chemotaxonomic characteristics and phylogenetic analyses revealed that strain WY-1T belonged to the genus Parapedobacter . Strain WY-1T showed a range of phenotypic characteristics that differentiated it from species of the genus Parapedobacter with validly published names, including its assimilation from carbon sources, enzyme activities and having a wider pH range for growth. Based on these results, it is concluded that strain WY-1T represents a novel species of the genus Parapedobacter , for which the name Parapedobacter defluvii sp. nov. is proposed. The type strain is WY-1T (=NBRC 112611T=CGMCC 1.15342T).
-
The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of Parapedobacter defluvii strain WY-1T is KY612414.
-
Three supplementary figures are available with the online Supplementary Material.
- Keyword(s): sewage, Parapedobacter defluvii, activated carbon packing
© 2017 IUMS | Published by the Microbiology Society
-
1. Steyn PL, Segers P, Vancanneyt M, Sandra P, Kersters K et al. Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 1998;48:165–177 [CrossRef][PubMed]
-
2. Yabuuchi E, Kaneko T, Yano I, Moss CW, Miyoshi N. Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting gram-negative rods in CDC groups IIK-2 and IIb. Int J Syst Bacteriol 1983;33:580–598 [CrossRef]
-
3. Ntougias S, Fasseas C, Zervakis GI. Olivibacter sitiensis gen. nov., sp. nov., isolated from alkaline olive-oil mill wastes in the region of Sitia, Crete. Int J Syst Evol Microbiol 2007;57:398–404 [CrossRef][PubMed]
-
4. Kim MK, Na JR, Cho DH, Soung NK, Yang DC. Parapedobacter koreensis gen. nov., sp. nov. Int J Syst Evol Microbiol 2007;57:1336–1341 [CrossRef][PubMed]
-
5. Kim MK, Kim YA, Kim YJ, Soung NK, Yi TH et al. Parapedobacter soli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2008;58:337–340 [CrossRef][PubMed]
-
6. Kim SJ, Weon HY, Kim YS, Yoo SH, Kim BY et al. Parapedobacter luteus sp. nov. and Parapedobacter composti sp. nov., isolated from cotton waste compost. Int J Syst Evol Microbiol 2010;60:1849–1853 [CrossRef][PubMed]
-
7. Zhao JK, Li XM, Zhang MJ, Jin JH, Jiang CY et al. Parapedobacter pyrenivorans sp. nov., isolated from a pyrene-degrading microbial enrichment, and emended description of the genus Parapedobacter. Int J Syst Evol Microbiol 2013;63:3994–3999 [CrossRef][PubMed]
-
8. Kumar R, Dwivedi V, Nayyar N, Verma H, Singh AK et al. Parapedobacter indicus sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol 2015;65:129–134 [CrossRef][PubMed]
-
9. Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985;49:1–7[PubMed]
-
10. Gerhardt P. Methods for General and Molecular Bacteriology In: Gerhardt P, Murray R, Wood W, Krieg N. (editors) Washington, DC: American Society for Microbiology; 1994
-
11. Dong X, Cai M. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
-
12. Li X, Zhang M, Jin J, Liu S, Jiang C. Population shift and degrading characteristics of a pyrene-degrading bacterial consortium during incubation process. Wei Sheng Wu Xue Bao 2012;52:1260–1267[PubMed]
-
13. Zhao JK, Li XM, Ai GM, Deng Y, Liu SJ et al. Reconstruction of metabolic networks in a fluoranthene-degrading enrichments from polycyclic aromatic hydrocarbon polluted soil. J Hazard Mater 2016;318:90–98 [CrossRef][PubMed]
-
14. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. MIDI Inc: Newark, DE; 1990
-
15. Collins M. Isoprenoid quinone analysis in bacterial classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985; pp.267–287
-
16. Wu C, Lu X, Qin M, Wang Y, Ruan J. Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 1989;16:176–178
-
17. Kamekura M. Lipids of extreme halophiles. In Vreeland R, Hochstein L. (editors) The Biology of Halophilic Bacteria Boca Raton, FL: CRC Press; 1993; pp135–161
-
18. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
-
19. Zhang D, Yang H, Zhang W, Huang Z, Liu SJ. Rhodocista pekingensis sp. nov., a cyst-forming phototrophic bacterium from a municipal wastewater treatment plant. Int J Syst Evol Microbiol 2003;53:1111–1114 [CrossRef][PubMed]
-
20. Marmur J, Doty P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 1962;5:109–118 [CrossRef][PubMed]
-
21. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
-
22. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008;74:2461–2470 [CrossRef][PubMed]
-
23. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
-
24. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
-
25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425[PubMed]
-
26. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
-
27. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971;20:406–416 [CrossRef]
-
28. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/ijsem/10.1099/ijsem.0.002360dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/ijsem/10.1099/ijsem.0.002360dcterms_title,dcterms_subject-pub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....