- Home
- Publications
- International Journal of Systematic and Evolutionary Microbiology
- Volume 67, Issue 11
- Article

f Salsuginimonas clara gen. nov., sp. nov., a member of the family Pseudoalteromonadaceae isolated from a brackish river
- Authors: Shih-Yi Sheu1 , Pei-Bei Xie1 , Ceshing Sheu2 , Wen-Ming Chen3
-
- VIEW AFFILIATIONS
-
1 1Department of Marine Biotechnology, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd. Nan-Tzu, Kaohsiung City 811, Taiwan, ROC 2 2Department of Applied Chemistry, Chaoyang University of Technology, No.168, Jifong E. Rd., Wufeng, Taichung, Taiwan, ROC 3 3Department of Seafood Science, Laboratory of Microbiology, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd. Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
- *Correspondence: Wen-Ming Chen [email protected]
- First Published Online: 06 October 2017, International Journal of Systematic and Evolutionary Microbiology 67: 4747-4753, doi: 10.1099/ijsem.0.002371
- Subject: New taxa - Proteobacteria
- Received:
- Accepted:
- Cover date:




Salsuginimonas clara gen. nov., sp. nov., a member of the family Pseudoalteromonadaceae isolated from a brackish river, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/ijsem/67/11/4747_ijsem002371-1.gif
-
A bacterial strain designated LSN-49T was isolated from a brackish river in Taiwan and characterized using a polyphasic taxonomy approach. Cells of strain LSN-49T were Gram-staining-negative, aerobic, poly-β-hydroxybutyrate accumulating, motile by means of a monopolar flagellum, non-spore forming, straight rods and formed shiny and translucent colonies. Growth occurred at 20–40 °C (optimum, 25–30 °C), at pH 6–10 (optimum, pH 7–8) and with 0–3 % (w/v) NaCl [optimum, 0–1 % (w/v)]. The predominant fatty acids were summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c), C17 : 1ω8c and C16 : 0. The polar lipid profile consisted of a mixture of phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylcholine, (PC), two uncharacterized aminophospholipids (APL1 and APL2), one uncharacterized glycolipid (GL1), four uncharacterized phospholipids (PL1–PL4) and four uncharacterized lipids (L1–L4). The major polyamine was putrescine. The major isoprenoid quinone was Q-8 and the DNA G+C content was 51.0 mol%. The results of phylogenetic analyses based on 16S rRNA gene sequences indicated that LSN-49T formed a distinct lineage with respect to closely related genera in the family Pseudoalteromonadaceae . LSN-49T was most closely related to Pseudoalteromonas , Algicola and Psychrosphaera and showed 89.3–92.1 % sequence similarity with members of the family Pseudoalteromonadaceae with validly published names. On the basis of the genotypic and phenotypic data, LSN-49T represents a novel genus and species of the family Pseudoalteromonadaceae , for which the name Salsuginimonas clara gen. nov., sp. nov. is proposed. The type strain is LSN-49T (=BCRC 81005T=LMG 29726T=KCTC 52439T).
-
The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of Salsuginimonas clara strain LSN-49T is LT555402.
-
One supplementary table and three supplementary figures are available with the online Supplementary Material.
- Keyword(s): Proteobacteria, Alteromonadales, brackish river, Pseudoalteromonadaceae, New taxa, Salsuginimonas clara
© 2017 IUMS | Published by the Microbiology Society
-
1. Ivanova EP, Flavier S, Christen R. Phylogenetic relationships among marine Alteromonas-like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol 2004; 54: 1773– 1788 [CrossRef] [PubMed]
-
2. Gauthier G, Gauthier M, Christen R. Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int J Syst Bacteriol 1995; 45: 755– 761 [CrossRef] [PubMed]
-
3. Ivanova EP, Sawabe T, Lysenko AM, Gorshkova NM, Hayashi K et al. Pseudoalteromonas translucida sp. nov. and Pseudoalteromonas paragorgicola sp. nov., and emended description of the genus. Int J Syst Evol Microbiol 2002; 52: 1759– 1766 [CrossRef] [PubMed]
-
4. Park S, Yoshizawa S, Hamasaki K, Kogure K, Yokota A. Psychrosphaera saromensis gen. nov., sp. nov., within the family Pseudoalteromonadaceae, isolated from Lake Saroma, Japan. J Gen Appl Microbiol 2010; 56: 475– 480 [CrossRef] [PubMed]
-
5. Hwang CY, Lee I, Hwang YJ, Yoon SJ, Lee WS et al. Pseudoalteromonas neustonica sp. nov., isolated from the sea surface microlayer of the Ross Sea (Antarctica), and emended description of the genus Pseudoalteromonas. Int J Syst Evol Microbiol 2016; 66: 3377– 3382 [CrossRef] [PubMed]
-
6. Chen WM, Laevens S, Lee TM, Coenye T, de Vos P et al. Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 2001; 51: 1729– 1735 [CrossRef] [PubMed]
-
7. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173: 697– 703 [CrossRef] [PubMed]
-
8. Anzai Y, Kudo Y, Oyaizu H. The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 1997; 47: 249– 251 [CrossRef] [PubMed]
-
9. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67: 1613– 1617 [CrossRef] [PubMed]
-
10. Cole JR, Wang Q, Cardenas E, Fish J, Chai B et al. The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 2009; 37: D141– D145 [CrossRef] [PubMed]
-
11. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41: 95– 98
-
12. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33: 1870– 1874 [CrossRef] [PubMed]
-
13. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. CLUSTAL W and CLUSTAL X version 2.0. Bioinformatics 2007; 23: 2947– 2948 [CrossRef] [PubMed]
-
14. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983; [Crossref]
-
15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
-
16. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
-
17. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18: 1– 32 [CrossRef]
-
18. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993; 10: 1073– 1095 [PubMed]
-
19. Felsenstein J. PHYLIP (Phylogeny inference package), version 3.5c Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA 1993
-
20. Beveridge TJ, Lawrence JR, Murray RGE. Sampling and staining for light microscopy. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR. et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp. 19– 33
-
21. Powers EM. Efficacy of the Ryu nonstaining KOH technique for rapidly determining Gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995; 61: 3756– 3758 [PubMed]
-
22. Schlegel HG, Lafferty R, Krauss I. The isolation of mutants not accumulating poly-β-hydroxybutyric acid. Arch Mikrobiol 1970; 71: 283– 294 [CrossRef] [PubMed]
-
23. Spiekermann P, Rehm BH, Kalscheuer R, Baumeister D, Steinbüchel A. A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 1999; 171: 73– 80 [CrossRef] [PubMed]
-
24. Breznak JA, Costilow RN. Physicochemical factors in growth. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR. et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp. 309– 329
-
25. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparativesystematic. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR. et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp. 330– 393
-
26. Wen CM, Tseng CS, Cheng CY, Li YK. Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. Biotechnol Appl Biochem 2002; 35: 213– 219 [CrossRef] [PubMed]
-
27. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50: 1861– 1868 [CrossRef] [PubMed]
-
28. Chang SC, Wang JT, Vandamme P, Hwang JH, Chang PS et al. Chitinimonas taiwanensis gen. nov., sp. nov., a novel chitinolytic bacterium isolated from a freshwater pond for shrimp culture. Syst Appl Microbiol 2004; 27: 43– 49 [CrossRef] [PubMed]
-
29. Nokhal TH, Schlegel HG. Taxonomic study of Paracoccus denitrificans. Int J Syst Bacteriol 1983; 33: 26– 37 [CrossRef]
-
30. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
-
31. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994; pp. 121– 161
-
32. Collins MD. Isoprenoid quinones. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994; pp. 265– 309
-
33. Ying Y, Tian XX, Wang JJ, Qu LY, Li J. Pseudoalteromonas fenneropenaei sp. nov., a marine bacterium isolated from sediment of Fenneropenaeus chinensis farming pond. Int J Syst Evol Microbiol 2016; 66: 2754– 2759 [CrossRef] [PubMed]
-
34. Zhao CH, Luo JJ, Gong T, Huang XL, Ye DZ et al. Pseudoalteromonas xiamenensis sp. nov., a marine bacterium isolated from coastal surface seawater. Int J Syst Evol Microbiol 2014; 64: 444– 448 [CrossRef] [PubMed]
-
35. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39: 159– 167 [CrossRef]
-
36. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988; 11: 1– 8 [CrossRef]
-
37. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997; 47: 698– 708 [CrossRef]
-
38. Lee JH, Baik KS, Kim D, Seong CN. Psychrosphaera aestuarii sp. nov. and Psychrosphaera haliotis sp. nov., isolated from the marine environment, and emended description of the genus Psychrosphaera. Int J Syst Evol Microbiol 2014; 64: 1952– 1957 [CrossRef] [PubMed]
-
39. Ludwig W, Strunk O, Klugbauer S, Klugbauer N, Weizenegger M et al. Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 1998; 19: 554– 568 [CrossRef] [PubMed]
-
40. Holmström C, James S, Neilan BA, White DC, Kjelleberg S. Pseudoalteromonas tunicata sp. nov., a bacterium that produces antifouling agents. Int J Syst Bacteriol 1998; 48: 1205– 1212 [CrossRef] [PubMed]
-
41. Nam YD, Chang HW, Park JR, Kwon HY, Quan ZX et al. Pseudoalteromonas marina sp. nov., a marine bacterium isolated from tidal flats of the Yellow Sea, and reclassification of Pseudoalteromonas sagamiensis as Algicola sagamiensis comb. nov. Int J Syst Evol Microbiol 2007; 57: 12– 18 [CrossRef] [PubMed]
-
42. Park S, Jung YT, Park DS, Yoon JH. Pseudoalteromonas aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016; 66: 2078– 2083 [CrossRef] [PubMed]
-
43. Sawabe T, Makino H, Tatsumi M, Nakano K, Tajima K et al. Pseudoalteromonas bacteriolytica sp. nov., a marine bacterium that is the causative agent of red spot disease of Laminaria japonica. Int J Syst Bacteriol 1998; 48: 769– 774 [CrossRef] [PubMed]
-
44. Kobayashi T, Imada C, Hiraishi A, Tsujibo H, Miyamoto K et al. Pseudoalteromonas sagamiensis sp. nov., a marine bacterium that produces protease inhibitors. Int J Syst Evol Microbiol 2003; 53: 1807– 1811 [CrossRef] [PubMed]
-
45. Lau SC, Tsoi MM, Li X, Dobretsov S, Plakhotnikova Y et al. Pseudoalteromonas spongiae sp. nov., a novel member of the γ-Proteobacteria isolated from the sponge Mycale adhaerens in Hong Kong waters. Int J Syst Evol Microbiol 2005; 55: 1593– 1596 [CrossRef] [PubMed]

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/ijsem/10.1099/ijsem.0.002371dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/ijsem/10.1099/ijsem.0.002371dcterms_title,dcterms_subject-pub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....