1887

Abstract

Novel Gram-stain-negative, non-spore-forming, vibrio-shaped, anaerobic, alkaliphilic, sulfate-reducing bacteria, designated strains PAR180 and PAR190, were isolated from sediments collected at an alkaline crater lake in Guanajuato (Mexico). Strain PAR180 grew at temperatures between 15 and 40 °C (optimum 35 °C), and at pH between 8.3 and 10.4 (optimum 9). It was halotolerant, growing with up to 8 % (w/v) NaCl. Lactate, formate, pyruvate and ethanol were used as electron donors in the presence of sulfate and were incompletely oxidized to acetate and CO. The isolate was able to grow with hydrogen and with CO as a carbon source. Beside sulfate, sulfite and thiosulfate were used as terminal electron acceptors. The isolate was able to grow by disproportionation of sulfite and thiosulfate, but not elemental sulfur, using acetate as a carbon source. The predominant fatty acids were C, Cω7 and summed feature 10 (Cω7 and/or Cω9 and/or Cω12). The DNA G+C content was 56.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that it belongs to the genus , class . Its closest relative is (98.7 % 16S rRNA gene sequence similarity). The DNA–DNA relatedness value between strain PAR180 and the type strain of was 37.1±2.5 %. On the basis of phylogenetic, phenotypic and chemotaxonomic characteristics, the isolates is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is PAR180 (=DSM 103602=JCM 31598).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002399
2017-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/12/4999.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002399&mimeType=html&fmt=ahah

References

  1. Grant WD, Mwatha WE, Jones BE. Alkaliphiles: Ecology, diversity and applications. FEMS Microbiol Lett 1990; 75:255–269 [View Article]
    [Google Scholar]
  2. Hockin SL, Gadd GM. Bioremediation of metals and metalloids by precipitation and cellar binding. In Barton L, Hamilton W. (editors) Sulphate-Reducing Bacteria New York: Cambridge University Press; 2007 pp. 405–434 [Crossref]
    [Google Scholar]
  3. Foti M, Sorokin DY, Lomans B, Mussman M, Zacharova EE et al. Diversity, activity, and abundance of sulfate-reducing bacteria in saline and hypersaline soda lakes. Appl Environ Microbiol 2007; 73:2093–2100 [View Article][PubMed]
    [Google Scholar]
  4. Sorokin DY, Kuenen JG, Muyzer G. The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes. Front Microbiol 2011; 2:article 44 [View Article][PubMed]
    [Google Scholar]
  5. Kuever J. The family Desulfobacteraceae . In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. et al. (editors) The Prokaryotes: Deltaproteobacteria and Epsilonproteobacteria Berlin, Heidelberg: Springer Berlin Heidelberg; 2014 pp. 45–73
    [Google Scholar]
  6. Kuever J. The family Desulfobulbaceae . In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. et al. (editors) The Prokaryotes: Deltaproteobacteria and Epsilonproteobacteria Berlin, Heidelberg: Springer Berlin Heidelberg; 2014 pp. 75–86
    [Google Scholar]
  7. Kuever J. The family Desulfohalobiaceae . In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. et al. (editors) The Prokaryotes: Deltaproteobacteria and Epsilonproteobacteria Berlin, Heidelberg: Springer Berlin Heidelberg; 2014 pp. 87–95
    [Google Scholar]
  8. Kuever J, Rainey FA. Family IV. Desulfonatronumaceae fam. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 2 (The Proteobacteria, part C The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) New York: Springer; 2005 pp. 956–958
    [Google Scholar]
  9. Kuever J. The family Desulfonatronaceae . In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F. et al. (editors) The Prokaryotes: Deltaproteobacteria and Epsilonproteobacteria Berlin, Heidelberg: Springer Berlin Heidelberg; 2014 pp. 103–106
    [Google Scholar]
  10. Pikuta EV, Zhilina TN, Zavarzin GA, Kostrikina NA, Osipov GA et al. Desulfonatronum lacustre gen. nov., sp. nov.: a new alkaliphilic sulfate-reducing bacterium utilizing ethanol. Microbiology 1998; 67:123–131
    [Google Scholar]
  11. Pikuta EV, Hoover RB, Bej AK, Marsic D, Whitman WB et al. Desulfonatronum thiodismutans sp. nov., a novel alkaliphilic, sulfate-reducing bacterium capable of lithoautotrophic growth. Int J Syst Evol Microbiol 2003; 53:1327–1332 [View Article][PubMed]
    [Google Scholar]
  12. Zhilina TN, Zavarzina DG, Kuever J, Lysenko AM, Zavarzin GA. Desulfonatronum cooperativum sp. nov., a novel hydrogenotrophic, alkaliphilic, sulfate-reducing bacterium, from a syntrophic culture growing on acetate. Int J Syst Evol Microbiol 2005; 55:1001–1006 [View Article][PubMed]
    [Google Scholar]
  13. Sorokin DY, Tourova TP, Kolganova TV, Detkova EN, Galinski EA et al. Culturable diversity of lithotrophic haloalkaliphilic sulfate-reducing bacteria in soda lakes and the description of Desulfonatronum thioautotrophicum sp. nov., Desulfonatronum thiosulfatophilum sp. nov., Desulfonatronovibrio thiodismutans sp. nov., and Desulfonatronovibrio magnus sp. nov. Extremophiles 2011; 15:391–401 [View Article][PubMed]
    [Google Scholar]
  14. Ryzhmanova Y, Nepomnyashchaya Y, Abashina T, Ariskina E, Troshina O et al. New sulfate-reducing bacteria isolated from Buryatian alkaline brackish lakes: description of Desulfonatronum buryatense sp. nov. Extremophiles 2013; 17:851–859 [View Article][PubMed]
    [Google Scholar]
  15. Sorokin DY, Tourova TP, Muyzer G. Isolation and characterization of two novel alkalitolerant sulfidogens from a Thiopaq bioreactor, Desulfonatronum alkalitolerans sp. nov., and Sulfurospirillum alkalitolerans sp. nov. Extremophiles 2013; 17:535–543 [View Article][PubMed]
    [Google Scholar]
  16. Zakharyuk AG, Kozyreva LP, Khijniak TV, Namsaraev BB, Shcherbakova VA. Desulfonatronum zhilinae sp. nov., a novel haloalkaliphilic sulfate-reducing bacterium from soda lake alginskoe, Trans-Baikal region, Russia. Extremophiles 2015; 19:673–680 [View Article][PubMed]
    [Google Scholar]
  17. Armienta MA, Vilaclara G, de La Cruz-Reyna S, Ramos S, Ceniceros N et al. Water chemistry of lakes related to active and inactive Mexican volcanoes. J Volcanol Geoth Res 2008; 178:249–258 [View Article]
    [Google Scholar]
  18. Widdel F, Bak F. Gram-negative mesophilic sulfate-reducing bacteria. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH. et al. (editors) The Prokaryotes New York: Springer-Verlag; 1992 pp. 3200–3221
    [Google Scholar]
  19. Overmann J, Fischer U, Pfennig N. A new purple sulfur bacterium from saline littoral sediments, Thiorhodovibrio winogradskyi gen. nov. and sp. nov. Arch Microbiol 1992; 157:329–335 [Crossref]
    [Google Scholar]
  20. Pfennig N, Trüper HG. The family Chromatiaceae . In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH. et al. (editors) The Prokaryotes New York: Springer-Verlag; 1992 pp. 3200–3221 [Crossref]
    [Google Scholar]
  21. Colin Y, Goñi-Urriza M, Caumette P, Guyoneaud R. Combination of high throughput cultivation and dsrA sequencing for assessment of sulfate-reducing bacteria diversity in sediments. FEMS Microbiol Ecol 2013; 83:26–37 [View Article][PubMed]
    [Google Scholar]
  22. Widdel F, Pfennig N. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 1981; 129:395–400[PubMed] [Crossref]
    [Google Scholar]
  23. Hungate RE. A roll tube method for cultivation of strict anaerobes. Methods Microbiol 1969; 3B:117–132 [Crossref]
    [Google Scholar]
  24. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  25. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  26. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  27. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25:125–128 [View Article]
    [Google Scholar]
  28. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  29. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142 [View Article][PubMed]
    [Google Scholar]
  30. Huss VAR, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4:184–192 [View Article]
    [Google Scholar]
  31. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc Committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  32. Cord-Ruwisch R. A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 1985; 4:33–36 [View Article]
    [Google Scholar]
  33. Cline JD. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 1969; 14:454–458 [View Article]
    [Google Scholar]
  34. Miller LT. A single derivatization method for bacterial fatty acid methyl esters including hydroxy acids. J Clin Microbiol 1982; 16:584–586
    [Google Scholar]
  35. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  36. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  37. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  38. Postgate JR. Cytochrome c3 and desulphoviridin; pigments of the anaerobe Desulphovibrio desulphuricans . J Gen Microbiol 1956; 14:545–572 [View Article][PubMed]
    [Google Scholar]
  39. Poser A, Lohmayer R, Vogt C, Knoeller K, Planer-Friedrich B et al. Disproportionation of elemental sulfur by haloalkaliphilic bacteria from soda lakes. Extremophiles 2013; 17:1003–1012 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002399
Loading
/content/journal/ijsem/10.1099/ijsem.0.002399
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error