1887

Abstract

Two yellow-pigmented isolates, S5-249 and L9-754, originating from surface-sterilized plant tissues of L. (Jatropha) cultivars were characterized using a polyphasic taxonomic approach. Strains S5-249 and L9-754 had 16S rRNA genes sharing 94.2 % sequence similarity with each other and 91.6–97.2 % sequence similarity with those of other species in the genus , suggesting that they represent two potentially novel species. The 16S rRNA gene sequences of strains S5-249 and L9-754 shared the highest similarity to that of NBRC 13937 (96.1 and 97.2 %, respectively). The genomic DNA G+C contents of strains S5-249 and L9-754 were 66.9 and 68.5 mol%, respectively. The respiratory quinone was determined to be Q-10, and the major polyamine was homospermidine. Strains S5-249 and L9-754 contained summed feature 7 (comprising Cω7, Cω9 and/or Cω12), C, C 2-OH and summed feature 4 (Cω7, iso-C 2-OH and Cω7) as the major cellular fatty acids. The predominant polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and sphingoglycolipid. The average nucleotide identity (ANI) values between NBRC 13937 and the two type strains (S5-249 and L9-754) were 72.31 and 77.73 %, respectively. Digital DNA–DNA hybridization (dDDH) studies between the novel strains (S5-249 and L9-754) and other species of the genus were well below the thresholds used to discriminate between bacterial species. The results of dDDH and physiological tests allowed genotypic and phenotypic differentiation of the strains from each other as well as from the species of the genus with validly published names. These data strongly support the classification of the strains as representatives of novel species, for which we propose the names sp. nov. (type strain S5-249=DSM 27345=KACC 17593) and sp. nov. (type strain L9-754=DSM 27347=KACC 17595).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002434
2017-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/12/5150.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002434&mimeType=html&fmt=ahah

References

  1. Yabuuchi E, Kosako Y, Fujiwara N, Naka T, Matsunaga I et al. Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola . Int J Syst Evol Microbiol 2002; 52:1485–1496 [View Article][PubMed]
    [Google Scholar]
  2. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001; 51:1405–1417 [View Article][PubMed]
    [Google Scholar]
  3. Holmes B, Owen RJ, Evans A, Malnick H, Willcox WR. Pseudomonas paucimobilis, a new species isolated from human clinical specimens, the hospital environment, and other sources. Int J Syst Bacteriol 1977; 27:133–146 [View Article]
    [Google Scholar]
  4. Karlson U, Rojo F, van Elsas JD, Moore E. Genetic and serological evidence for the recognition of four pentachlorophenol-degrading bacterial strains as a species of the genus Sphingomonas . Syst Appl Microbiol 1995; 18:539–548 [View Article]
    [Google Scholar]
  5. Kim E, Aversano PJ, Romine MF, Schneider RP, Zylstra GJ. Homology between genes for aromatic hydrocarbon degradation in surface and deep-subsurface Sphingomonas strains. Appl Environ Microbiol 1996; 62:1467–1470[PubMed]
    [Google Scholar]
  6. Shi T, Fredrickson JK, Balkwill DL. Biodegradation of polycyclic aromatic hydrocarbons by Sphingomonas strains isolated from the terrestrial subsurface. J Ind Microbiol Biotechnol 2001; 26:283–289 [View Article][PubMed]
    [Google Scholar]
  7. Zylstra GJ, Kim E. Aromatic hydrocarbon degradation by Sphingomonas yanoikuyae B1. J Ind Microbiol Biotechnol 1997; 19:408–414 [View Article][PubMed]
    [Google Scholar]
  8. Balkwill DL, Drake GR, Reeves RH, Fredrickson JK, White DC et al. Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea sp. nov., and Sphingomonas stygia sp. nov. Int J Syst Bacteriol 1997; 47:191–201 [View Article][PubMed]
    [Google Scholar]
  9. Baraniecki CA, Aislabie J, Foght JM. Characterization of Sphingomonas sp. Ant 17, an aromatic hydrocarbon-degrading bacterium isolated from Antarctic soil. Microb Ecol 2002; 43:44–54 [View Article][PubMed]
    [Google Scholar]
  10. Kim H, Nishiyama M, Kunito T, Senoo K, Kawahara K et al. High population of Sphingomonas species on plant surface. J Appl Microbiol 1998; 85:731–736 [View Article]
    [Google Scholar]
  11. Busse HJ, Denner EB, Buczolits S, Salkinoja-Salonen M, Bennasar A et al. Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas . Int J Syst Evol Microbiol 2003; 53:1253–1260 [View Article][PubMed]
    [Google Scholar]
  12. Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B et al. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci USA 2009; 106:16428–16433 [View Article][PubMed]
    [Google Scholar]
  13. Innerebner G, Knief C, Vorholt JA. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl Environ Microbiol 2011; 77:3202–3210 [View Article][PubMed]
    [Google Scholar]
  14. Andrews JH. Biological control in the phyllosphere. Annu Rev Phytopathol 1992; 30:603–635 [View Article][PubMed]
    [Google Scholar]
  15. Jacobsen B. Biological control of plant diseases by phyllosphere applied biological control agents. Microbial Ecology of Aerial Plant Surfaces 2006 pp. 133–147 [Crossref]
    [Google Scholar]
  16. Divakara BN, Upadhyaya HD, Wani SP, Gowda CLL. Biology and genetic improvement of Jatropha curcas L.: A review. Appl Energy 2010; 87:732–742 [View Article]
    [Google Scholar]
  17. Madhaiyan M, Hu CJ, Jegan Roy J, Kim SJ, Weon HY et al. Aureimonas jatrophae sp. nov. and Aureimonas phyllosphaerae sp. nov., leaf-associated bacteria isolated from Jatropha curcas L. Int J Syst Evol Microbiol 2013; 63:1702–1708 [View Article][PubMed]
    [Google Scholar]
  18. Madhaiyan M, Jin TY, Roy JJ, Kim SJ, Weon HY et al. Pleomorphomonas diazotrophica sp. nov., an endophytic N-fixing bacterium isolated from root tissue of Jatropha curcas L. Int J Syst Evol Microbiol 2013; 63:2477–2483 [View Article][PubMed]
    [Google Scholar]
  19. Madhaiyan M, Hu CJ, Kim SJ, Weon HY, Kwon SW et al. Jatrophihabitans endophyticus gen. nov., sp. nov., an endophytic actinobacterium isolated from a surface-sterilized stem of Jatropha curcas L. Int J Syst Evol Microbiol 2013; 63:1241–1248 [View Article][PubMed]
    [Google Scholar]
  20. Madhaiyan M, Peng N, Te NS, Hsin C, Lin C et al. Improvement of plant growth and seed yield in Jatropha curcas by a novel nitrogen-fixing root associated Enterobacter species. Biotechnol Biofuels 2013; 6:140 [View Article][PubMed]
    [Google Scholar]
  21. Madhaiyan M, Alex TH, Ngoh ST, Prithiviraj B, Ji L. Leaf-residing Methylobacterium species fix nitrogen and promote biomass and seed production in Jatropha curcas . Biotechnol Biofuels 2015; 8:222 [View Article][PubMed]
    [Google Scholar]
  22. Gyaneshwar P, James EK, Mathan N, Reddy PM, Reinhold-Hurek B et al. Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Bacteriol 2001; 183:2634–2645 [View Article][PubMed]
    [Google Scholar]
  23. Breznak JA, Costilow RN. Physicochemical factors in growth. Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: American Society of Microbiology; 2007 pp. 309–3329
    [Google Scholar]
  24. Kim BC, Poo H, Lee KH, Kim MN, Kwon OY et al. Mucilaginibacter angelicae sp. nov., isolated from the rhizosphere of Angelica polymorpha Maxim. Int J Syst Evol Microbiol 2012; 62:55–60 [View Article][PubMed]
    [Google Scholar]
  25. Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P et al. Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 1985; 162:328–334[PubMed]
    [Google Scholar]
  26. Wilson K. Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol 2001; Chapter 2:2.4. 1–2.4.2 [View Article][PubMed]
    [Google Scholar]
  27. Delong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA 1992; 89:5685–5689 [View Article][PubMed]
    [Google Scholar]
  28. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  29. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  30. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  31. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  32. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  33. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  34. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  35. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008; 31:241–250 [View Article][PubMed]
    [Google Scholar]
  36. Munoz R, Yarza P, Ludwig W, Euzéby J, Amann R et al. Release LTPs104 of the All-Species Living Tree. Syst Appl Microbiol 2011; 34:169–170 [View Article][PubMed]
    [Google Scholar]
  37. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  38. Bennett S. Solexa Ltd. Pharmacogenomics 2004; 5:433–438 [View Article][PubMed]
    [Google Scholar]
  39. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  40. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  41. Feng GD, Yang SZ, Xiong X, Li HP, Zhu HH. Sphingomonas spermidinifaciens sp. nov., a novel bacterium containing spermidine as the major polyamine, isolated from an abandoned lead-zinc mine and emended descriptions of the genus Sphingomonas and the species Sphingomonas yantingensis and Sphingomonas japonica . Int J Syst Evol Microbiol 2017; 67:2160–2165 [View Article][PubMed]
    [Google Scholar]
  42. Denner EB, Paukner S, Kämpfer P, Moore ER, Abraham WR et al. Sphingomonas pituitosa sp. nov., an exopolysaccharide-producing bacterium that secretes an unusual type of sphingan. Int J Syst Evol Microbiol 2001; 51:827–841 [View Article][PubMed]
    [Google Scholar]
  43. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  44. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 1988; 11:1–8 [View Article]
    [Google Scholar]
  45. Busse HJ, Kämpfer P, Denner EB. Chemotaxonomic characterisation of Sphingomonas . J Ind Microbiol Biotechnol 1999; 23:242–251 [View Article][PubMed]
    [Google Scholar]
  46. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  47. Kämpfer P, Meurer U, Esser M, Hirsch T, Busse HJ. Sphingomonas pseudosanguinis sp. nov., isolated from the water reservoir of an air humidifier. Int J Syst Evol Microbiol 2007; 57:1342–1345 [View Article][PubMed]
    [Google Scholar]
  48. Takeuchi M, Kawai F, Shimada Y, Yokota A. Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov. Syst Appl Microbiol 1993; 16:227–238 [View Article]
    [Google Scholar]
  49. Rivas R, Abril A, Trujillo ME, Velázquez E. Sphingomonas phyllosphaerae sp. nov., from the phyllosphere of Acacia caven in Argentina. Int J Syst Evol Microbiol 2004; 54:2147–2150 [View Article][PubMed]
    [Google Scholar]
  50. Choi TE, Liu QM, Yang JE, Sun S, Kim SY et al. Sphingomonas ginsenosidimutans sp. nov., with ginsenoside converting activity. J Microbiol 2010; 48:760–766 [View Article][PubMed]
    [Google Scholar]
  51. Huang HY, Li J, Zhao GZ, Zhu WY, Yang LL et al. Sphingomonas endophytica sp. nov., isolated from Artemisia annua L. Int J Syst Evol Microbiol 2012; 62:1576–1580 [View Article][PubMed]
    [Google Scholar]
  52. Chen H, Jogler M, Tindall BJ, Klenk HP, Rohde M et al. Sphingomonas starnbergensis sp. nov., isolated from a prealpine freshwater lake. Int J Syst Evol Microbiol 2013; 63:1017–1023 [View Article][PubMed]
    [Google Scholar]
  53. Choi GM, Jo JH, Kang MS, Kim MS, Lee SY et al. Sphingomonas aquatica sp. nov., isolated from tap water. Int J Syst Evol Microbiol 2017; 67:845–850 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002434
Loading
/content/journal/ijsem/10.1099/ijsem.0.002434
Loading

Data & Media loading...

Supplements

Supplementary File 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error