- Home
- Publications
- International Journal of Systematic and Evolutionary Microbiology
- Volume 68, Issue 1
- Article

f Paenibacillus xanthanilyticus sp. nov., a xanthan-degrading bacterium isolated from soil
- Authors: Simin Ashraf1 , Mohammad Reza Soudi1 , Mohammad Ali Amoozegar2 , Mahdi Moshtaghi Nikou3 , Cathrin Spröer4
-
- VIEW AFFILIATIONS
-
1 1Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran 2 2Department of Microbiology, Extremophiles Laboratory, Faculty of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran 3 3Microorganisms Bank, Iranian Biological Resource Centre (IBRC), ACECR, Tehran, Iran 4 4Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
- *Correspondence: Mohammad Reza Soudi [email protected] [email protected]
- First Published Online: 14 November 2017, International Journal of Systematic and Evolutionary Microbiology 68: 76-80, doi: 10.1099/ijsem.0.002453
- Subject: New Taxa - Firmicutes and Related Organisms
- Received:
- Accepted:
- Cover date:




Paenibacillus xanthanilyticus sp. nov., a xanthan-degrading bacterium isolated from soil, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/ijsem/68/1/76_ijsem002453-1.gif
-
A xanthan-degrading bacterium, strain AS7T, was isolated from soil and its taxonomic position was determined using a polyphasic approach. Strain AS7T was a Gram-stain-variable, spore-forming, motile, aerobic, rod-shaped bacterium. Phylogenetic analysis based on 16S rRNA gene sequence analysis revealed that strain AS7T belongs to the genus Paenibacillus , sharing the highest level of sequence similarity with Paenibacillus phyllosphaerae PALXIL04T (98.0 %). The cell-wall peptidoglycan contained meso-diaminopimelic acid. MK-7 was the dominant isoprenoid quinone and the major fatty acid was anteiso-C15 : 0. Polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and two unknown phospholipids. These chemotaxonomic characteristics were consistent with the isolate belonging to the genus Paenibacillus . The G+C content of the genomic DNA was 51.0 mol% and the DNA–DNA hybridization value between strain AS7T and P. phyllosphaerae PALXIL04T was only 14.4±2.5 %. On the basis of phylogenetic analyses, phenotypic and chemotaxonomic characteristics, and DNA–DNA relatedness value, strain AS7T represents a novel species of the genus Paenibacillus , for which the name Paenibacillus xanthanilyticus sp. nov. is proposed. The type strain is AS7T (=IBRC M 10987T=LMG 29451T).
-
The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain AS7T is KT429627.
-
One supplementary figure is available with the online version of this article.
- Keyword(s): polyphasic taxonomy, xanthanolytic bacterium, Paenibacillus
© 2018 IUMS | Published by the Microbiology Society
-
1. García-Ochoa F, Santos VE, Casas JA, Gómez E. Xanthan gum: production, recovery, and properties. Biotechnol Adv 2000; 18: 549– 579 [CrossRef] [PubMed]
-
2. Nankai H, Hashimoto W, Miki H, Kawai S, Murata K. Microbial system for polysaccharide depolymerization: enzymatic route for xanthan depolymerization by Bacillus sp. strain GL1. Appl Environ Microbiol 1999; 65: 2520– 2526 [PubMed]
-
3. Priest FG. Genus I. Paenibacillus. In De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey’s Manual of Systematic Bacteriology New York: Springer; 2009; pp. 269– 295
-
4. Rivas R, Mateos PF, Martínez-Molina E, Velázquez E. Paenibacillus phyllosphaerae sp. nov., a xylanolytic bacterium isolated from the phyllosphere of Phoenix dactylifera. Int J Syst Evol Microbiol 2005; 55: 743– 746 [CrossRef] [PubMed]
-
5. Ruijssenaars HJ, de Bont JA, Hartmans S. A pyruvated mannose-specific xanthan lyase involved in xanthan degradation by Paenibacillus alginolyticus XL-1. Appl Environ Microbiol 1999; 65: 2446– 2452 [PubMed]
-
6. Muchová M, Růzicka J, Julinová M, Dolezalová M, Houser J et al. Xanthan and gellan degradation by bacteria of activated sludge. Water Sci Technol 2009; 60: 965– 973 [CrossRef] [PubMed]
-
7. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie van Leeuwenhoek 1993; 64: 253– 260 [CrossRef]
-
8. Ash C, Priest FG, Collins MD. Paenibacillus gen. nov. In validation of the publication of new names and new combinations previously effectively published outside the IJSB, List no. 51. Int J Syst Bacteriol 1994; 44: 852– 853 [Crossref]
-
9. De Vos P, Ludwig W, Schleifer KH, Whitman WB. Family IV. Paenibacillaceae fam. nov. In De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey’s Manual of Systematic Bacteriology New York: Springer; 2009; p. 269
-
11. Logan NA, Berge O, Bishop AH, Busse HJ, de Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59: 2114– 2121 [CrossRef] [PubMed]
-
12. Liu H, Huang C, Dong W, du Y, Bai X et al. Biodegradation of xanthan by newly isolated Cellulomonas sp. LX, releasing elicitor-active xantho-oligosaccharides-induced phytoalexin synthesis in soybean cotyledons. Process Biochem 2005; 40: 3701– 3706 [CrossRef]
-
13. Hucker GJ, Conn HJ. Method of Gram staining. N Y State Agric Exp Stn Tech Bull 1923; 93: 3– 37
-
14. Schaeffer AB, Fulton MD. A simplified method of staining endospores. Science 1933; 77: 194 [CrossRef] [PubMed]
-
15. MacFaddin JF. Biochemical Tests for Identification of Medical Bacteria, 3rd ed. Philadelphia, PA: The Lippincott, Williams & Wilkins Co; 2000
-
16. Son JS, Kang HU, Ghim SY. Paenibacillus dongdonensis sp. nov., isolated from rhizospheric soil of Elymus tsukushiensis. Int J Syst Evol Microbiol 2014; 64: 2865– 2870 [CrossRef] [PubMed]
-
17. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematic. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology Washington, DC: ASM Press; 2007; pp. 330– 393
-
18. Krieg N, Padgett JP. Phenotypic and physiological characterization methods. In Rainey F, Oren A. (editors) Methods in Microbiology, Taxonomy of Prokaryotes London: Academic Press, Elsevier; 2011; pp. 15– 60 [Crossref]
-
19. Simbert RM, Krieg NR. Phenotypic characterization. In Gerhard P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: ASM Press; 1994; pp. 607– 655
-
20. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173: 697– 703 [CrossRef] [PubMed]
-
21. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991; pp. 115– 175
-
22. Chun J, Lee JH, Jung Y, Kim M, Kim S et al. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 2007; 57: 2259– 2261 [CrossRef] [PubMed]
-
23. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22: 4673– 4680 [CrossRef] [PubMed]
-
24. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406– 425 [PubMed]
-
25. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17: 368– 376 [CrossRef] [PubMed]
-
26. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10: 512– 526 [PubMed]
-
27. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1992; 9: 945– 967
-
28. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28: 2731– 2739 [CrossRef] [PubMed]
-
29. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39: 783– 791 [CrossRef] [PubMed]
-
30. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12: 133– 142 [CrossRef] [PubMed]
-
31. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4: 184– 192 [CrossRef] [PubMed]
-
32. Cashion P, Holder-Franklin MA, Mccully J, Franklin M. A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 1977; 81: 461– 466 [CrossRef] [PubMed]
-
33. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25: 125– 128 [CrossRef]
-
34. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE, USA: Microbial ID Inc; 1990
-
35. Collins MD. Isoprenoid quinone analysis in classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985; pp. 267– 287
-
36. Wu C, Lu X, Qin M, Wang Y, Ruan J. The analysis of menaquinone compound in microbial cells by HPLC. Microbiology 1989; 16: 176– 178
-
37. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2: 233– 241 [CrossRef]
-
38. Stackebrandt E, Goebel BM. Taxonomic note: a place for dna-dna reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44: 846– 849 [CrossRef]
-
39. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33: 152– 155
-
40. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14: 60 [CrossRef] [PubMed]
-
41. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64: 346– 351 [CrossRef] [PubMed]
-
42. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37: 463– 464 [CrossRef]
-
43. Kämpfer P, Rosselló-Mora R, Falsen E, Busse HJ, Tindall BJ. Cohnella thermotolerans gen. nov., sp. nov., and classification of 'Paenibacillus hongkongensis' as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 2006; 56: 781– 786 [CrossRef] [PubMed]

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/ijsem/10.1099/ijsem.0.002453dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/ijsem/10.1099/ijsem.0.002453dcterms_title,dcterms_subject-pub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....