1887

Abstract

A novel endophytic bacterium, designated strain HZ7, was isolated from the root nodules of growing in a lead–zinc mine in Mianxian County, Shaanxi Province, China. Cells were Gram-reaction-negative, aerobic, motile, rod-shaped, methyl-red-negative, catalase-positive, positive for chitosan-degrading activity and did not produce HS. Strain HZ7 grew at 4–45 °C (optimum 25–30 °C), at pH 5–9 (optimum pH 7–8) and with 0–1 % (w/v) NaCl. The quinone type was ubiquinone 8 (UQ-8). The major fatty acids were identified as C, C cyclo and summed feature 3 (Cω7 and/or Cω6). The G+C content of the genomic DNA was 68.5 mol% by whole genome sequencing. According to 16S rRNA gene sequence analysis, the closest phylogenetic relative was 3001 (99.05 % similarity). Genome relatedness was computed using average nucleotide identity and genome-to-genome distance analysis, both of which strongly supported strain HZ7as belonging to the genus as a representative of a novel species. On the basis of phylogenetic analysis, chemotaxonomic data and physiological characteristics, strain HZ7 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is HZ7 (=JCM 31671=CCTCC AB 2014353).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002459
2018-01-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/1/87.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002459&mimeType=html&fmt=ahah

References

  1. Amakata D, Matsuo Y, Shimono K, Park JK, Yun CS et al. Mitsuaria chitosanitabida gen. nov., sp. nov., an aerobic, chitosanase-producing member of the 'Betaproteobacteria'. Int J Syst Evol Microbiol 2005; 55:1927–1932 [View Article][PubMed]
    [Google Scholar]
  2. Yun C, Amakata D, Matsuo Y, Matsuda H, Kawamukai M. New chitosan-degrading strains that produce chitosanases similar to ChoA of Mitsuaria chitosanitabida . Appl Environ Microbiol 2005; 71:5138–5144 [View Article][PubMed]
    [Google Scholar]
  3. Someya N, Ikeda S, Morohoshi T, Noguchi Tsujimoto M, Yoshida T et al. Diversity of culturable chitinolytic bacteria from rhizospheres of agronomic plants in Japan. Microbes Environ 2011; 26:7–14 [View Article][PubMed]
    [Google Scholar]
  4. Peng N, Xu W, Wang F, Hu J, Ma M et al. Mitsuaria chitosanase with unrevealed important amino acid residues: characterization and enhanced production in Pichia pastoris . Appl Microbiol Biotechnol 2013; 97:171–179 [View Article][PubMed]
    [Google Scholar]
  5. Choi YJ, Kim EJ, Piao Z, Yun YC, Shin YC. Purification and characterization of chitosanase from Bacillus sp. strain KCTC 0377BP and its application for the production of chitosan oligosaccharides. Appl Environ Microbiol 2004; 70:4522–4531 [View Article][PubMed]
    [Google Scholar]
  6. Gooday GW. The many uses of chitinases in nature. Chitin & Chitosan Res 1997; 3:98–99
    [Google Scholar]
  7. Wang Y, Zhou P, Yu J, Pan X, Wang P et al. Antimicrobial effect of chitooligosaccharides produced by chitosanase from Pseudomonas CUY8. Asia Pac J Clin Nutr 2007; 16:174–177[PubMed]
    [Google Scholar]
  8. Shen KT, Chen MH, Chan HY, Jeng JH, Wang YJ. Inhibitory effects of chitooligosaccharides on tumor growth and metastasis. Food Chem Toxicol 2009; 47:1864–1871 [View Article][PubMed]
    [Google Scholar]
  9. Felt O, Buri P, Gurny R. Chitosan: a unique polysaccharide for drug delivery. Drug Dev Ind Pharm 1998; 24:979–993 [View Article][PubMed]
    [Google Scholar]
  10. El Hadrami A, Adam LR, El Hadrami I, Daayf F. Chitosan in plant protection. Mar Drugs 2010; 8:968–987 [View Article][PubMed]
    [Google Scholar]
  11. Yorinaga Y, Kumasaka T, Yamamoto M, Hamada K, Kawamukai M. Crystal structure of a family 80 chitosanase from Mitsuaria chitosanitabida . FEBS Lett 2017; 591:540–547 [View Article][PubMed]
    [Google Scholar]
  12. Kamicker BJ, Brill WJ. Identification of Bradyrhizobium japonicum nodule isolates from Wisconsin soybean farms. Appl Environ Microbiol 1986; 51:487–492[PubMed]
    [Google Scholar]
  13. Vincent JM. A manual for the Practical Study of the Root-Nodule Bacteria Oxford-Edinburgh: Blackwell Scientific; 1970
    [Google Scholar]
  14. Dong X, Cai M. (editors) Determination of biochemical properties. Manual for the Systematic Identification of General Bacteria Beijing: Science Press (in Chinese); 2001 pp. 370–398
    [Google Scholar]
  15. Skerman VBD. A guide to the identification of the genera of bacteria. Acad Med 1960; 35:
    [Google Scholar]
  16. Cappuccino JG, Sherman N. Microbiology: A Laboratory Manual Boston, MA: Pearson/Benjamin Cummings; 2008
    [Google Scholar]
  17. Tan ZY, Wang ET, Peng GX, Zhu ME, Martínez-Romero E et al. Characterization of bacteria isolated from wild legumes in the north-western regions of China. Int J Syst Bacteriol 1999; 49:1457–1469 [View Article][PubMed]
    [Google Scholar]
  18. Smibert R. Phenotypic characterization. In Murray RGE, Willis AW, Noel RK. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  19. Komagata K, Susuki K. Lipid and cell-wall systematics in bacterial systematics. Method Microbiol 1987; 19:161–207 [Crossref]
    [Google Scholar]
  20. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  21. Gomila M, Bowien B, Falsen E, Moore ER, Lalucat J. Description of Roseateles aquatilis sp. nov. and Roseateles terrae sp. nov., in the class Betaproteobacteria, and emended description of the genus Roseateles . Int J Syst Evol Microbiol 2008; 58:6–11 [View Article][PubMed]
    [Google Scholar]
  22. Chun J, Goodfellow M. A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 1995; 45:240–245 [View Article][PubMed]
    [Google Scholar]
  23. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  24. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  25. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  26. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  27. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  28. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008; 24:713–714 [View Article][PubMed]
    [Google Scholar]
  29. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 2001; 29:2607–2618 [View Article][PubMed]
    [Google Scholar]
  30. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article][PubMed]
    [Google Scholar]
  31. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  32. Wayne L. International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [Crossref]
    [Google Scholar]
  33. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  34. Gomila M, Bowien B, Falsen E, Moore ER, Lalucat J. Description of Pelomonas aquatica sp. nov. and Pelomonas puraquae sp. nov., isolated from industrial and haemodialysis water. Int J Syst Evol Microbiol 2007; 57:2629–2635 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002459
Loading
/content/journal/ijsem/10.1099/ijsem.0.002459
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error