1887

Abstract

Two actinobacterial isolates, strains SG15 and SGB14, were recovered through a microbial diversity study of nitrogen fixing nodules from plants collected in Salamanca (Spain). The taxonomic status of these isolates was determined using a polyphasic approach and both presented chemotaxonomic and morphological properties consistent with their classification in the genus For strains SG15 and SGB14, the highest 16S rRNA gene sequence similarities were observed with JCM 13248 (99.2 %) and DSM 43821 (99.4 %), respectively. However, strains SG15 and SGB14 were readily distinguished from their phylogenetic neighbours both genetically and phenotypically indicating that they represent two new species. The following names are proposed for these species: sp. nov. type strain SG15 (=CECT 9369; =DSM 105363), and sp. nov. type strain SGB14 (=CECT 9370; =DSM 105362).

Keyword(s): endophyte , Micromonospora , MLSA , nodule , Pisum and taxonomy
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002490
2018-01-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/1/248.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002490&mimeType=html&fmt=ahah

References

  1. Trujillo ME, Riesco R, Benito P, Carro L. Endophytic Actinobacteria and the interaction of Micromonospora and nitrogen fixing plants. Front Microbiol 2015; 6:1341 [View Article][PubMed]
    [Google Scholar]
  2. Golinska P, Wypij M, Agarkar G, Rathod D, Dahm H et al. Endophytic actinobacteria of medicinal plants: diversity and bioactivity. Antonie van Leeuwenhoek 2015; 108:267–289 [View Article][PubMed]
    [Google Scholar]
  3. Genilloud O. Family I. Micromonosporaceae Krasil’nikov 1938, 272AL emend. Zhi, Li and Stackebrandt 2009, 599. In Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki KI et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 5 The Actinobacteria, Part B New York: Springer; 2012 pp. 1035–1038
    [Google Scholar]
  4. Xie QY, Wang C, Wang R, Qu Z, Lin HP et al. Jishengella endophytica gen. nov., sp. nov., a new member of the family Micromonosporaceae. Int J Syst Evol Microbiol 2011; 61:1153–1159 [View Article][PubMed]
    [Google Scholar]
  5. Wang X, Jia F, Liu C, Zhao J, Wang L et al. Xiangella phaseoli gen. nov., sp. nov., a member of the family Micromonosporaceae. Int J Syst Evol Microbiol 2013; 63:2138–2145 [View Article][PubMed]
    [Google Scholar]
  6. Matsumoto A, Kawaguchi Y, Nakashima T, Iwatsuki M, Ōmura S et al. Rhizocola hellebori gen. nov., sp. nov., an actinomycete of the family Micromonosporaceae containing 3,4-dihydroxydiaminopimelic acid in the cell-wall peptidoglycan. Int J Syst Evol Microbiol 2014; 64:2706–2711 [View Article][PubMed]
    [Google Scholar]
  7. Zhu WY, Zhao LX, Zhao GZ, Duan XW, Qin S et al. Plantactinospora endophytica sp. nov., an actinomycete isolated from Camptotheca acuminata Decne., reclassification of Actinaurispora siamensis as Plantactinospora siamensis comb. nov. and emended descriptions of the genus Plantactinospora and Plantactinospora mayteni. Int J Syst Evol Microbiol 2012; 62:2435–2442 [View Article][PubMed]
    [Google Scholar]
  8. Carro L, Pujic P, Trujillo ME, Normand P. Micromonospora is a normal occupant of actinorhizal nodules. J Biosci 2013; 38:685–693 [View Article][PubMed]
    [Google Scholar]
  9. Carro L, Riesco R, Sproer C, Trujillo ME. Three new species of Micromonospora isolated from Pisum sativum nodules: Micromonospora ureilytica sp. nov., Micromonospora noduli sp. nov., and Micromonospora vinacea sp. nov. Int J Syst Evol Microbiol 2016
    [Google Scholar]
  10. Carro L, Riesco R, Spröer C, Trujillo ME. Micromonospora luteifusca sp. nov. isolated from cultivated Pisum sativum. Syst Appl Microbiol 2016; 39:237–242 [View Article][PubMed]
    [Google Scholar]
  11. Trujillo ME, Kroppenstedt RM, Fernández-Molinero C, Schumann P, Martínez-Molina E. Micromonospora lupini sp. nov. and Micromonospora saelicesensis sp. nov., isolated from root nodules of Lupinus angustifolius. Int J Syst Evol Microbiol 2007; 57:2799–2804 [View Article][PubMed]
    [Google Scholar]
  12. Trujillo ME, Kroppenstedt RM, Schumann P, Carro L, Martínez-Molina E. Micromonospora coriariae sp. nov., isolated from root nodules of Coriaria myrtifolia. Int J Syst Evol Microbiol 2006; 56:2381–2385 [View Article][PubMed]
    [Google Scholar]
  13. Garcia LC, Martínez-Molina E, Trujillo ME. Micromonospora pisi sp. nov., isolated from root nodules of Pisum sativum. Int J Syst Evol Microbiol 2010; 60:331–337 [View Article][PubMed]
    [Google Scholar]
  14. Trujillo ME, Alonso-Vega P, Rodríguez R, Carro L, Cerda E et al. The genus Micromonospora is widespread in legume root nodules: the example of Lupinus angustifolius. Isme J 2010; 4:1265–1281 [View Article][PubMed]
    [Google Scholar]
  15. Kirby BM, Meyers PR. Micromonospora tulbaghiae sp. nov., isolated from the leaves of wild garlic, Tulbaghia violacea. Int J Syst Evol Microbiol 2010; 60:1328–1333 [View Article][PubMed]
    [Google Scholar]
  16. Thawai C. Micromonospora costi sp. nov., isolated from a leaf of Costus speciosus. Int J Syst Evol Microbiol 2015; 65:1456–1461 [View Article][PubMed]
    [Google Scholar]
  17. Kittiwongwattana C, Thanaboripat D, Laosinwattana C, Koohakan P, Parinthawong N et al. Micromonospora oryzae sp. nov., isolated from roots of upland rice. Int J Syst Evol Microbiol 2015; 65:3818–3823 [View Article][PubMed]
    [Google Scholar]
  18. Li L, Mao YJ, Xie QY, Deng Z, Hong K. Micromonospora avicenniae sp. nov., isolated from a root of Avicennia marina. Antonie van Leeuwenhoek 2013; 103:1089–1096 [View Article][PubMed]
    [Google Scholar]
  19. Ørskov J. Investigations into the Morphology of the Ray Fungi Copenhagen: Levin and Munksgaard; 1923
    [Google Scholar]
  20. Euzéby JP. List of bacterial names with standing in nomenclature: a folder available on the Internet. Int J Syst Bacteriol 1997; 47:590–592 [View Article][PubMed]
    [Google Scholar]
  21. Carro L, Spröer C, Alonso P, Trujillo ME. Diversity of Micromonospora strains isolated from nitrogen fixing nodules and rhizosphere of Pisum sativum analyzed by multilocus sequence analysis. Syst Appl Microbiol 2012; 35:73–80 [View Article][PubMed]
    [Google Scholar]
  22. Vincent JM. The cultivation, isolation and maintenance of rhizobia. In Vincent JM. (editor) A Manual for the Practical Study of the Root-Nodule Bacteria Oxford: Blackwell Scientific; 1970 pp. 1–13
    [Google Scholar]
  23. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  24. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  25. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  26. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  28. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  29. Trujillo ME, Fernández-Molinero C, Velázquez E, Kroppenstedt RM, Schumann P et al. Micromonospora mirobrigensis sp. nov. Int J Syst Evol Microbiol 2005; 55:877–880 [View Article][PubMed]
    [Google Scholar]
  30. Jones KL. Fresh isolates of Actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 1949; 57:141–145[PubMed]
    [Google Scholar]
  31. Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH et al. Numerical classification of Streptomyces and related genera. J Gen Microbiol 1983; 129:1743–1813 [View Article][PubMed]
    [Google Scholar]
  32. Carro L, Pukall R, Spröer C, Kroppenstedt RM, Trujillo ME. Micromonospora cremea sp. nov. and Micromonospora zamorensis sp. nov., isolated from the rhizosphere of Pisum sativum. Int J Syst Evol Microbiol 2012; 62:2971–2977 [View Article][PubMed]
    [Google Scholar]
  33. Rhuland LE, Work E, Denman RF, Hoare DS. The behavior of the isomers of α,ε-diaminopimelic acid on paper chromatograms. J Am Chem Soc 1955; 77:4844–4846 [View Article]
    [Google Scholar]
  34. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  35. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  36. Collins MD. Analysis of isoprenoid quinones. In Bergan T. (editor) Methods Microbiol vol. 18 New York: Academic Press; 1985 pp. 329–366
    [Google Scholar]
  37. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  38. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231[PubMed]
    [Google Scholar]
  39. Sasser MJ. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, Technical Note 101. Newark, DE: Microbial ID Inc.; 1990
    [Google Scholar]
  40. Mandel M, Marmur J. [109] Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods in Enzymology vol. 12, Part B New York: Academic Press; 1968 pp. 195–206
    [Google Scholar]
  41. Phongsopitanun W, Kudo T, Ohkuma M, Pittayakhajonwut P, Suwanborirux K et al. Micromonospora sediminis sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2016; 66:3235–3240 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002490
Loading
/content/journal/ijsem/10.1099/ijsem.0.002490
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error