1887

Abstract

A bacterial strain, designated ASS-1, was isolated and identified from a sediment sample of the river Ganges, Allahabad, India. The strain was Gram-stain-negative, formed straw-yellow pigmented colonies, was strictly aerobic, motile with a single polar flagellum, and positive for oxidase and catalase. The major fatty acids were Cω7/ 16 : 1 Cω6, Cω7 and C. Sequence analysis based on the 16S rRNA gene revealed that strain ASS-1 showed high similarity to CC-G9A (98.2 %), ATCC 14909 (98.2 %), DSM 1045 (98.1 %), IPL-1 (98.1 %) and HT-3 (98.0 %). Analysis of its and housekeeping genes confirmed its phylogenetic affiliation and showed identities lower than 93 % with respect to the closest relatives. Phylogenetic analysis based on the 16S rRNA, genes and the whole genome assigned it to the genus The results of digital DNA–DNA hybridization based on the genome-to-genome distance calculator and average nucleotide identity revealed low genome relatedness to its close phylogenetic neighbours (below the recommended thresholds of 70 and 95 %, respectively, for species delineation). Strain ASS-1 also differed from the related strains by some phenotypic characteristics, i.e. growth at pH 5.0 and 42 °C, starch and casein hydrolysis, and citrate utilization. Therefore, based on data obtained from phenotypic and genotypic analysis, it is evident that strain ASS-1 should be regarded as a novel species within the genus , for which the name sp. nov. is proposed. The type strain is ASS-1 (=KCTC 52437=CCM 8778).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002520
2018-01-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/1/402.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002520&mimeType=html&fmt=ahah

References

  1. Palleroni NJ. Genus I. Pseudomonas Migula, 237AL (Nom. Cons., Opin. 5 of the Jud. Comm. 1952, 121). In Rutgers. (editor) Bergey's Manual of Systematics of Archaea and Bacteria 2015
    [Google Scholar]
  2. Sneath PH, Stevens M, Sackin MJ. Numerical taxonomy of Pseudomonas based on published records of substrate utilization. Antonie van Leeuwenhoek 1981; 47:423–448 [View Article][PubMed]
    [Google Scholar]
  3. Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 2000; 50:1563–1589 [View Article][PubMed]
    [Google Scholar]
  4. Yamamoto S, Kasai H, Arnold DL, Jackson RW, Vivian A et al. Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 2000; 146:2385–2394 [View Article][PubMed]
    [Google Scholar]
  5. Vancanneyti M, Witt S, Abraham W-R, Kersters K, Fredrickson HL. Fatty acid content in whole-cell hydrolysates and phospholipid and phospholipid fractions of pseudomonads: a taxonomic evaluation. Syst Appl Microbiol 1996; 19:528–540 [View Article]
    [Google Scholar]
  6. Willems A, Falsen E, Pot B, Jantzen E, Hoste B et al. Acidovorax, a new genus for Pseudomonas facilis, Pseudomonas delafieldii, E. Falsen (EF) group 13, EF group 16, and several clinical isolates, with the species Acidovorax facilis comb. nov., Acidovorax delafieldii comb. nov., and Acidovorax temperans sp. nov. Int J Syst Bacteriol 1990; 40:384–398 [View Article][PubMed]
    [Google Scholar]
  7. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas . Microbiol Immunol 1990; 34:99–119 [View Article][PubMed]
    [Google Scholar]
  8. Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H et al. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol 1992; 36:1251–1275 [View Article][PubMed]
    [Google Scholar]
  9. Brown GR, Sutcliffe IC, Cummings SP. Reclassification of [Pseudomonas] doudoroffii (Baumann et al. 1983) into the genus Oceanomonas gen. nov. as Oceanomonas doudoroffii comb. nov., and description of a phenol-degrading bacterium from estuarine water as Oceanomonas baumannii sp. nov. Int J Syst Evol Microbiol 2001; 51:67–72 [View Article][PubMed]
    [Google Scholar]
  10. Willems A, Busse J, Goor M, Pot B, Falsen E et al. Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov. (Formerly Pseudomonas flava), Hydrogenophaga palleronii (Formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (Formerly Pseudomonas pseudoflava and "Pseudomonas carboxydoflava"), and Hydrogenophaga taeniospiralis (Formerly Pseudomonas taeniospiralis). Int J Syst Bacteriol 1989; 39:319–333 [View Article]
    [Google Scholar]
  11. Yabuuchi E, Kosako Y, Yano I, Hotta H, Nishiuchi Y. Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.: proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. Nov., Ralstonia solanacearum (Smith 1896) comb. Nov. and Ralstonia eutropha (Davis 1969) comb. Nov. Microbiol Immunol 1995; 39:897–904[PubMed] [Crossref]
    [Google Scholar]
  12. Tamaoka J, Ha D-M, Komagata K. Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb. nov., with an emended description of the genus Comamonas . Int J Syst Bacteriol 1987; 37:52–59 [View Article]
    [Google Scholar]
  13. de Bentzmann S, Plésiat P. The Pseudomonas aeruginosa opportunistic pathogen and human infections. Environ Microbiol 2011; 13:1655–1665 [View Article][PubMed]
    [Google Scholar]
  14. Hirano SS, Upper CD. Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae-a pathogen, ice nucleus, and epiphyte. Microbiol Mol Biol Rev 2000; 64:624–653 [View Article][PubMed]
    [Google Scholar]
  15. Keel C, Weller DM, Natsch A, Défago G, Cook RJ et al. Conservation of the 2,4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations. Appl Environ Microbiol 1996; 62:552–563[PubMed]
    [Google Scholar]
  16. Prakash B, Irfan M. Pseudomonas aeruginosa is present in crude oil contaminated sites of Barmer region (India). J Bioremed Biodegrad 2011; 2:129 [View Article]
    [Google Scholar]
  17. Igbinosa IH, Nwodo UU, Sosa A, Tom M, Okoh AI. Commensal Pseudomonas species isolated from wastewater and freshwater milieus in the Eastern Cape Province, South Africa, as reservoir of antibiotic resistant determinants. Int J Environ Res Public Health 2012; 9:2537–2549 [View Article][PubMed]
    [Google Scholar]
  18. Kittinger C, Lipp M, Baumert R, Folli B, Koraimann G et al. Antibiotic resistance patterns of Pseudomonas spp. Isolated from the river Danube. Front Microbiol 2016; 7:586 [View Article][PubMed]
    [Google Scholar]
  19. Murray RGE, Doetsch RN, Robinow CF. Determinative and cytological light microscopy. In Gerhard P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 36
    [Google Scholar]
  20. King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 1954; 44:301–307[PubMed]
    [Google Scholar]
  21. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
  22. Cowan ST, Steel KJ. Manual for the identification of Medical Bacteria London: Cambridge University Press; 1965
    [Google Scholar]
  23. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhard P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  24. Lányi B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19:1–67
    [Google Scholar]
  25. Smith NR, Gordon RE, Clark FE. Aerobic spore forming bacteria. U. S. Dep. Agric Agriculture Monograph 1952; 16:134–144
    [Google Scholar]
  26. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  27. Pandey KK, Mayilraj S, Chakrabarti T. Pseudomonas indica sp. nov., a novel butane-utilizing species. Int J Syst Evol Microbiol 2002; 52:1559–1567 [View Article][PubMed]
    [Google Scholar]
  28. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911–917 [View Article][PubMed]
    [Google Scholar]
  29. Komagata K, Suzuki K. Lipid and cell wall analysis in bacterial systematics. In Booth C, Bergan T, Bennett PM, Brown AJP, Colwell RR et al. (editors) Methods in Microbiol St. Louis, MO, USA: Academic Press; 1987 pp. 99
    [Google Scholar]
  30. Mayilraj S, Saha P, Suresh K, Saini HS. Ornithinimicrobium kibberense sp. nov., isolated from the Indian Himalayas. Int J Syst Evol Microbiol 2006; 56:1657–1661 [View Article][PubMed]
    [Google Scholar]
  31. Mulet M, Lalucat J, García-Valdés E. DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 2010; 12:1513–1530 [View Article][PubMed]
    [Google Scholar]
  32. Ait Tayeb L, Ageron E, Grimont F, Grimont PA. Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Res Microbiol 2005; 156:763–773 [View Article][PubMed]
    [Google Scholar]
  33. Mulet M, Bennasar A, Lalucat J, García-Valdés E. An rpoD-based PCR procedure for the identification of Pseudomonas species and for their detection in environmental samples. Mol Cell Probes 2009; 23:140–147 [View Article][PubMed]
    [Google Scholar]
  34. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  35. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  36. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ et al. GenBank. Nucleic Acids Res 2013; 41:D36–D42 [View Article][PubMed]
    [Google Scholar]
  37. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  38. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  39. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  40. Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun 2013; 4:2304 [View Article][PubMed]
    [Google Scholar]
  41. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article][PubMed]
    [Google Scholar]
  42. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  43. Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments; 2010; 59490
  44. Rambaut A. FigTree v1.4.3. Tree figure drawing tool. Available http://tree.bio.ed.ac.uk/software/figtree/ 2016
  45. Moore EB, Tindall B, Martins Dos Santos VP, Pieper D. Nonmedical: Pseudomonas . In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E et al. (editors) The Prokaryotes New York: Springer; 2006 pp. 646–703 [Crossref]
    [Google Scholar]
  46. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  47. Stackebrandt E, Goebel BM. Taxonomic Note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  48. Meier-Kolthoff JP, Klenk HP, Göker M. Taxonomic use of DNA G+C content and DNA–DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64:352–356 [View Article][PubMed]
    [Google Scholar]
  49. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  50. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  51. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 2004; 101:11030–11035 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002520
Loading
/content/journal/ijsem/10.1099/ijsem.0.002520
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error