- Home
- Publications
- International Journal of Systematic and Evolutionary Microbiology
- Volume 68, Issue 2
- Article

f Roseomonas deserti sp. nov., isolated from crude oil contaminated desert sand
- Authors: Y. Subhash1,† , Sang-Seob Lee1
-
- VIEW AFFILIATIONS
-
1 Department of Life Science, College of Natural Science, Kyonggi University, 154-42 Gwanggyosan-ro Yeongtong-gu Suwon-Si, Gyeonggi-Do, 16227, Republic of Korea † †Present address: Royal Netherlands Institute for Sea Research (NIOZ), Texel, The Netherlands.
- *Correspondence: Sang-Seob Lee [email protected]
- First Published Online: 08 January 2018, International Journal of Systematic and Evolutionary Microbiology 68: 675-680, doi: 10.1099/ijsem.0.002565
- Subject: New Taxa - Proteobacteria
- Received:
- Accepted:
- Cover date:




Roseomonas deserti sp. nov., isolated from crude oil contaminated desert sand, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/ijsem/68/2/675_ijsem002565-1.gif
-
Two dark pink pigmented bacterial strains (M3T and M11) were isolated from crude oil contaminated desert sand from Kuwait. Both strains were Gram-stain-negative and small-rod to oval-shaped bacteria. Strains M3T and M11 grew at 13–42 °C (optimum, 30–35 °C) and pH 6.5–9.0 (optimum, 7.0–7.5). No additional NaCl was required for the growth of both strains. The genomic DNA G+C content of strains M3T and M11 were 69.5 and 69.0 mol%, respectively. Both strains were closely related and the mean DNA–DNA hybridization value was 92±1 %. 16S rRNA gene sequence comparisons of both strains indicated that they belong to the genus Roseomonas . Strains M3T and M11 had a sequence similarity of 97.3 and 97.4 % with Roseomonas oryzae JC288T, respectively. Both strains had <97 % 16S rRNA gene sequence similarity with other members of the genus Roseomonas . Strain M3T showed 18±2 and 13±2 % reassociation (based on DNA–DNA hybridization) with R. oryzae KCTC 42542T and Roseomonas cervicalis KACC 11686T, respectively. The major cellular fatty acids (>5 %) were identified as C18 : 1ω6c/C18 : 1ω7c, C16 : 1ω6c/C16 : 1ω7c and C16 : 0 in both strains. Both strains showed diphosphatidylglycerol, phosphatidylglycerol, phosphatidyl-ethanolamine, phosphatidylcholine and unidentified glycolipid as major polar lipids. Based on distinct phenotypic, genotypic and phylogenetic differences from the previously described taxa, we propose the classification of strains M3T and M11 as representative of a novel species in the genus Roseomonas , for which the name Roseomonas deserti sp. nov. is suggested. The type strain is M3T (=KEMB 2255-459T=JCM 31275T).
-
The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain M3T is LT837512.
-
Two supplementary figures are available with the online version of this article.
- Keyword(s): Alphaproteobacteria, novel species, Roseomonas deserti, desert sands
© 2018 IUMS | Published by the Microbiology Society
-
1. Weyant RS, Whitney AM. Genus Roseomonas. In Brenner DJ, Krieg NR, Staley JT. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 2 Part C USA: Springer Science and Business Media; 2006; pp.88–92
-
2. Venkata Ramana V, Sasikala C, Takaichi S, Ramana C. Roseomonas aestuarii sp. nov., a bacteriochlorophyll-a containing alphaproteobacterium isolated from an estuarine habitat of India. Syst Appl Microbiol 2010;33:198–203 [CrossRef][PubMed]
-
3. Damtab J, Nutaratat P, Boontham W, Srisuk N, Duangmal K et al. Roseomonas elaeocarpi sp. nov., isolated from olive (Elaeocarpus hygrophilus Kurz.) phyllosphere. Int J Syst Evol Microbiol 2016;66:474–480 [CrossRef][PubMed]
-
4. Wang C, Deng S, Liu X, Yao L, Shi C et al. Roseomonas eburnea sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2016;66:385–390 [CrossRef][PubMed]
-
5. Chu CW, Chen Q, Wang CH, Wang HM, Sun ZG et al. Roseomonas chloroacetimidivorans sp. nov., a chloroacetamide herbicide-degrading bacterium isolated from activated sludge. Antonie van Leeuwenhoek 2016;109:611–618 [CrossRef][PubMed]
-
6. Subhash Y, Bang JJ, You TH, Lee SS. Roseomonas rubra sp. nov., isolated from lagoon sediments. Int J Syst Evol Microbiol 2016;66:3821–3827 [CrossRef][PubMed]
-
7. Ramaprasad EV, Sasikala C, Ramana C. Roseomonas oryzae sp. nov., isolated from paddy rhizosphere soil. Int J Syst Evol Microbiol 2015;65:3535–3540 [CrossRef][PubMed]
-
8. Kim DU, Ka JO. Roseomonas soli sp. nov., isolated from an agricultural soil cultivated with Chinese cabbage (Brassica campestris). Int J Syst Evol Microbiol 2014;64:1024–1029 [CrossRef][PubMed]
-
9. Chen Q, Sun LN, Zhang XX, He J, Kwon SW et al. Roseomonas rhizosphaerae sp. nov., a triazophos-degrading bacterium isolated from soil. Int J Syst Evol Microbiol 2014;64:1127–1133 [CrossRef][PubMed]
-
10. Dong L, Ming H, Yin YR, Duan YY, Zhou EM et al. Roseomonas alkaliterrae sp. nov., isolated from an alkali geothermal soil sample in Tengchong, Yunnan, South-West China. Antonie van Leeuwenhoek 2014;105:899–905 [CrossRef][PubMed]
-
11. Kim SJ, Weon HY, Ahn JH, Hong SB, Seok SJ et al. Roseomonas aerophila sp. nov., isolated from air. Int J Syst Evol Microbiol 2013;63:2334–2337 [CrossRef][PubMed]
-
12. Baik KS, Park SC, Choe HN, Kim SN, Moon JH et al. Roseomonas riguiloci sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2012;62:3024–3029 [CrossRef][PubMed]
-
13. Nutaratat P, Srisuk N, Duangmal K, Yurimoto H, Sakai Y et al. Roseomonas musae sp. nov., a new bacterium isolated from a banana phyllosphere. Antonie van Leeuwenhoek 2013;103:617–624 [CrossRef][PubMed]
-
14. Kim HS, Srinivasan S, Lee SS. Methyloterrigena soli gen. nov., sp. nov., a methanol-utilizing bacterium isolated from chloroethylene-contaminated soil. Int J Syst Evol Microbiol 2016;66:101–106 [CrossRef][PubMed]
-
15. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
-
16. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
-
17. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
-
18. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
-
19. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961;3:208–218 [CrossRef]
-
20. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
-
21. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989;39:224–229 [CrossRef]
-
22. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
-
23. Cappuccino JG, Sherman N. Microbiology - a Laboratory Manual, 8th ed. San Francisco, CA: Pearson Benjamin Cummings; 2008
-
24. Barker J, Maxted H. Observations on the growth and movement of Acinetobacter on semi-solid media. J Med Microbiol 1975;8:443–446 [CrossRef][PubMed]
-
25. Subhash Y, Park MJ, Lee SS. Microvirgula curvata sp. nov., isolated from hydrocarbon-contaminated soil, and emended description of the genus Microvirgula. Int J Syst Evol Microbiol 2016;66:5309–5313 [CrossRef][PubMed]
-
26. Bushnell LD, Haas HF. The utilization of certain hydrocarbons by microorganisms. J Bacteriol 1941;41:653–673[PubMed]
-
27. Subhash Y, Tushar L, Sasikala C, Ramana C. Falsirhodobacter halotolerans gen. nov., sp. nov., isolated from dry soils of a solar saltern. Int J Syst Evol Microbiol 2013;63:2132–2137 [CrossRef][PubMed]
-
28. Subhash Y, Sasikala C, Ramana C. Flavobacterium aquaticum sp. nov., isolated from a water sample of a rice field. Int J Syst Evol Microbiol 2013;63:3463–3469 [CrossRef][PubMed]
-
29. Subhash Y, Tushar L, Sasikala C, Ramana C. Erythrobacter odishensis sp. nov. and Pontibacter odishensis sp. nov. isolated from dry soil of a solar saltern. Int J Syst Evol Microbiol 2013;63:4524–4532 [CrossRef][PubMed]
-
30. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
-
31. Oren A, Duker S, Ritter S. The polar lipid composition of walsby's square bacterium. FEMS Microbiol Lett 1996;138:135–140 [CrossRef]
-
32. Hiraishi A, Hoshino Y, Kitamura H. Isoprenoid quinone composition in the classification of Rhodospirillaceae. J Gen Appl Microbiol 1984;30:197–210 [CrossRef]
-
33. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988;11:1–8 [CrossRef]

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/ijsem/10.1099/ijsem.0.002565dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/ijsem/10.1099/ijsem.0.002565dcterms_title,dcterms_subject-pub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....