- Home
- Publications
- International Journal of Systematic and Evolutionary Microbiology
- Volume 68, Issue 4
- Article

f Tessaracoccus aquimaris sp. nov., isolated from the intestine of a Korean rockfish, Sebastes schlegelii, from a marine aquaculture pond
- Authors: Euon Jung Tak1,2,† , Hyun Sik Kim1,2,† , June-Young Lee1,2 , Woorim Kang1,2 , Dong-Wook Hyun1,2 , Pil Soo Kim1,2 , Na-Ri Shin1,2 , Jin-Woo Bae1,2
-
- VIEW AFFILIATIONS
-
1 1Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea 2 2Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea
- *Correspondence: Jin-Woo Bae [email protected]
- First Published Online: 09 February 2018, International Journal of Systematic and Evolutionary Microbiology 68: 1065-1072, doi: 10.1099/ijsem.0.002626
- Subject: New Taxa - Actinobacteria
- Received:
- Accepted:
- Cover date:




Tessaracoccus aquimaris sp. nov., isolated from the intestine of a Korean rockfish, Sebastes schlegelii, from a marine aquaculture pond, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/ijsem/68/4/1065_ijsem002626-1.gif
-
A novel coccus-shaped, Gram-stain-positive, non-motile and aerobic bacterium, designated strain NSG39T, was isolated from the intestine of a Korean rockfish, Sebastes schlegelii. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the newly isolated strain NSG39T was closely related to Tessaracoccus flavus RP1T (98.0 %). The isolate grew at 15–37 °C, pH 7–9 and 0–4 % (w/v) salinity, with optimal growth at 30 °C, pH 8 and 0 % (w/v) salinity. The cell wall of the organism contained ll-diaminopimelic acid as a diagnostic diamino acid, and ribose, mannose, glucose and galactose as diagnostic sugars. The polar lipid comprised diphosphatidylglycerol, phosphatidylglycerol, three glycolipids and four unidentified polar lipids. The major cellular fatty acid was anteiso-C15 : 0 (47.2 %). The major menaquinone was MK-9 (H4). The DNA G+C content of the isolate was 68.8 mol%. The genome-based orthologous average nucleotide identity value for strain NSG39T and T. flavus RP1T was 76.6 %. Based on the phylogenetic analysis and its biological characteristics, strain NSG39T is considered to represent a novel species of the genus Tessaracoccus , for which the name Tessaracoccus aquimaris is proposed. The type strain is NSG39T (=KACC 17540T=JCM 19289T).
-
†
These authors contributed equally to this work.
-
The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain NSG39T is KC884005. The GenBank/EMBL/DDBJ accession number for the whole-genome shotgun project of strain NSG39T is CP019606.
-
Three supplementary figures are available with the online version of this article.
- Keyword(s): gut microbiota, Tessaracoccus, Korean rockfish, Actinobacteria
© 2018 IUMS | Published by the Microbiology Society
-
1. Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH. The influence of diet on the gut microbiota. Pharmacol Res 2013;69:52–60 [CrossRef][PubMed]
-
2. Gómez GD, Balcázar JL. A review on the interactions between gut microbiota and innate immunity of fish. FEMS Immunol Med Microbiol 2008;52:145–154 [CrossRef][PubMed]
-
4. Chyung MK. The fishes of Korea: Il Ji Sa 1977
-
5. Lim S et al. Effects of dehulled soybean meal as a fish meal replacer in diets for fingerling and growing Korean rockfish Sebastes schlegeli. Aquaculture 2004;231:457–468 [CrossRef]
-
6. Cho SH, Hur SB, Jo J-Y. Effect of enriched live feeds on survival and growth rates in larval Korean rockfish, Sebastes schlegeli Hilgendorf. Aquac Res 2001;32:199–208 [CrossRef]
-
7. Kim K-W, Wang XJ, Bai SC. Reevaluation of the optimum dietary protein level for the maximum growth of juvenile Korean rockfish, Sebastes schlegeli (Hilgendorf). Aquac Res 2001;32:119–125 [CrossRef]
-
8. Lee SM. Review of the lipid and essential fatty acid requirements of rockfish (Sebastes schlegeli). Aquac Res 2001;32:8–17 [CrossRef]
-
9. Lane DJ. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial systematics New York, NY: John Wiley and Sons; 1991; pp.115–175
-
10. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
-
11. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;41:95–98
-
12. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
-
13. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
-
14. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969;18:1–32 [CrossRef]
-
15. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
-
16. Tittsler RP, Sandholzer LA. The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 1936;31:575–580[PubMed]
-
17. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983;29:319–322 [CrossRef]
-
18. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974;28:226–231[PubMed]
-
19. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
-
20. MIDI Sherlock Microbial Identification System Operating Manual, version 3.0 Newark, DE: MIDI, Inc; 1999
-
21. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, DE: MIDI, Inc; 1990
-
22. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981;45:316–354[PubMed]
-
23. Collins MD, Jones D. A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. J Appl Bacteriol 1981;51:129–134 [CrossRef][PubMed]
-
24. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013;10:563–569 [CrossRef][PubMed]
-
25. Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E et al. IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res 2012;40:D115–D122 [CrossRef][PubMed]
-
26. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66:1100–1103 [CrossRef][PubMed]
-
27. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
-
28. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
-
29. Kumari R, Singh P, Schumann P, Lal R. Tessaracoccus flavus sp. nov., isolated from the drainage system of a lindane-producing factory. Int J Syst Evol Microbiol 2016;66:1862–1868 [CrossRef][PubMed]
-
30. Lee DW, Lee SD. Tessaracoccus flavescens sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2008;58:785–789 [CrossRef][PubMed]
-
31. Cai M, Wang L, Cai H, Li Y, Wang YN et al. Salinarimonas ramus sp. nov. and Tessaracoccus oleiagri sp. nov., isolated from a crude oil-contaminated saline soil. Int J Syst Evol Microbiol 2011;61:1767–1775 [CrossRef][PubMed]
-
32. Kämpfer P, Lodders N, Warfolomeow I, Busse HJ. Tessaracoccus lubricantis sp. nov., isolated from a metalworking fluid. Int J Syst Evol Microbiol 2009;59:1545–1549 [CrossRef][PubMed]
-
33. Li GD, Chen X, Li QY, Xu FJ, Qiu SM et al. Tessaracoccus rhinocerotis sp. nov., isolated from the faeces of Rhinoceros unicornis. Int J Syst Evol Microbiol 2016;66:922–927 [CrossRef][PubMed]
-
34. Maszenan AM, Seviour RJ, Patel BK, Schumann P, Rees GN. Tessaracoccus bendigoensis gen. nov., sp. nov., a gram-positive coccus occurring in regular packages or tetrads, isolated from activated sludge biomass. Int J Syst Bacteriol 1999;49:459–468 [CrossRef][PubMed]
-
35. Puente-Sánchez F, Sánchez-Román M, Amils R, Parro V. Tessaracoccus lapidicaptus sp. nov., an actinobacterium isolated from the deep subsurface of the Iberian pyrite belt. Int J Syst Evol Microbiol 2014;64:3546–3552 [CrossRef][PubMed]

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/ijsem/10.1099/ijsem.0.002626dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/ijsem/10.1099/ijsem.0.002626dcterms_title,dcterms_subject-pub_serialIdent:journal/ijsem AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....