1887

Abstract

A Gram-stain-positive, endospore-forming, rod-shaped, motile and strictly aerobic strain, designated T3-209, was isolated from sediment sampled at a water depth of 1206 m of the southern Okinawa Trough at station T1 (25.07° N, 122.58° E) near the Tangyin hydrothermal vent during an expedition on the R/V Kexue in May 2014. The strain was able to grow at a temperature range of 10–42 °C (optimum 28 °C). Growth was observed at NaCl concentrations (w/v) of 0–6 % (optimum 0 %). The pH range for growth was 7.0–9.0 (optimum 8.0). The 16S rRNA gene sequence analysis indicated that strain T3-209 belonged to the genus within the family and was most closely related to LMG 21831 and LMG 21833, with the same sequence similarity (97.0 %), but shared relatively low levels of similarity (92.6–96.9 %) to the type strains of other species. The peptidoglycan type of strain T3-209 was -diaminopimelic acid. The predominant cellular fatty acids were anteiso-C, iso-C and alcohol-C 7 The respiratory quinone was menaquinone-7. The polar lipids of strain T3-209 comprised phosphatidylglycerol, two unidentified phospholipids and one unidentified aminolipid. The DNA G+C content was 41.8 mol%. Combining results of phylogenetic analysis, phenotypic characterization and chemotaxonomic studies, strain T3-209 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is T3-209 (=KCTC 33631=DSM 29135=MCCC 1K00503).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002648
2018-04-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/4/1184.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002648&mimeType=html&fmt=ahah

References

  1. Ehrenberg CG. Dritter Beitrag zur Erkenntniss grosser Organisation in der Richtung des kleinsten Raumes. In Abhandlungen der Preussischen Akademie der Wissenschaften (Berlin) aus den Jahre 1835 pp. 143–336
    [Google Scholar]
  2. Parte AC. LPSN–list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42:D613–D616 [View Article][PubMed]
    [Google Scholar]
  3. Vos P, Garrity G, Jones D, Krieg NR, Ludwig W et al. Bergey’s manual of systematic bacteriology. In The Fimicutes 2nd ed vol. 3 New York: Springer-Verlag; 2009
    [Google Scholar]
  4. Kanwal N, Shah AA, Qayyum S, Hasan F. Optimization of pH and temperature for degradation of tyre rubber by Bacillus sp. strain S10 isolated from sewage sludge. Int Biodeterior Biodegradation 2015; 103:154–160 [View Article]
    [Google Scholar]
  5. Zhu D, Zhang P, Niu L, Xie C, Li P et al. Bacillus ectoiniformans sp. nov., a halotolerant bacterium isolated from deep-sea sediments. Int J Syst Evol Microbiol 2016; 66:616–622 [View Article][PubMed]
    [Google Scholar]
  6. Dunlap CA, Schisler DA, Perry EB, Connor N, Cohan FM et al. Bacillus swezeyi sp. nov. and Bacillus haynesii sp. nov., isolated from desert soil. Int J Syst Evol Microbiol 2017; 67:2720–2725 [View Article][PubMed]
    [Google Scholar]
  7. Gao C, Han J, Liu Z, Xu X, Hang F et al. Paenibacillus bovis sp. nov., isolated from raw yak (Bos grunniens) milk. Int J Syst Evol Microbiol 2016; 66:1413–1418 [View Article][PubMed]
    [Google Scholar]
  8. Logan NA, Berge O, Bishop AH, Busse HJ, De Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59:2114–2121 [View Article][PubMed]
    [Google Scholar]
  9. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG et al. Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, 3rd ed. New York: Wiley; 1995
    [Google Scholar]
  10. Yu T, Yin Q, Song X, Zhao R, Shi X et al. Aquimarina longa sp. nov., isolated from seawater, and emended description of Aquimarina muelleri . Int J Syst Evol Microbiol 2013; 63:1235–1240 [View Article][PubMed]
    [Google Scholar]
  11. Zhang Z, Yu T, Xu T, Zhang XH. Aquimarina pacifica sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2014; 64:1991–1997 [View Article][PubMed]
    [Google Scholar]
  12. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  13. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  14. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  15. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  16. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  17. Beveridge TJ, Lawrence JR, Murray RGE. Sampling and staining for light microscopy. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007 pp. 19–33
    [Google Scholar]
  18. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  19. Schaeffer AB, Fulton MD. A simplified method of staining endospores. Science 1933; 77:194 [View Article][PubMed]
    [Google Scholar]
  20. Tindall BJ, Sikorski J, Smibert RM, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007 pp. 330–393
    [Google Scholar]
  21. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria London: Cambridge University Press; 1965
    [Google Scholar]
  22. Yoon JH, Lee KC, Kho YH, Kang KH, Kim CJ et al. Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 2002; 52:123–130 [View Article][PubMed]
    [Google Scholar]
  23. Sasser M. Identification of Bacteria By Gas Chromatography Of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  24. Xie CH, Yokota A. Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 2003; 49:345–349 [View Article][PubMed]
    [Google Scholar]
  25. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  26. Collins MD, Shah HN. Fatty acid, menaquinone and polar lipid composition of Rothia dentocariosa. Arch Microbiol 1984; 137:247–249 [View Article]
    [Google Scholar]
  27. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:1–207
    [Google Scholar]
  28. Schumann P. Peptidoglycan structure. In Rainey F, Oren A. (editors) Taxonomy of Prokaryotes (Methods in Microbiology series) vol. 38 2011 pp. 101–129 [Crossref]
    [Google Scholar]
  29. Moore E, Arnscheidt A, Krüger A, Strömpl C, Mau M et al. Simplified protocols for the preparation of genomic DNA from bacterial cultures. In Akkermans ADL, van Elsas JD, de Bruijn FJ. (editors) Molecular Microbial Ecology Manual 1.6.1 Dordrecht: Kluwer; 1999 pp. 1–15
    [Google Scholar]
  30. Mesbah M, Whitman WB. Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr 1989; 479:297–306 [View Article][PubMed]
    [Google Scholar]
  31. Kämpfer P, Rosselló-Mora R, Falsen E, Busse HJ, Tindall BJ. Cohnella thermotolerans gen. nov., sp. nov., and classification of 'Paenibacillus hongkongensis' as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 2006; 56:781–786 [View Article][PubMed]
    [Google Scholar]
  32. Heyrman J, Vanparys B, Logan NA, Balcaen A, Rodríguez-Díaz M et al. Bacillus novalis sp. nov., Bacillus vireti sp. nov., Bacillus soli sp. nov., Bacillus bataviensis sp. nov. and Bacillus drentensis sp. nov., from the Drentse A grasslands. Int J Syst Evol Microbiol 2004; 54:47–57 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002648
Loading
/content/journal/ijsem/10.1099/ijsem.0.002648
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error