1887

Abstract

Three morphologically similar thermo-acidophilic strains, USBA-GBX-501, USBA-GBX-502 and USBA-GBX-503, were isolated from acidic thermal springs at the National Natural Park Los Nevados (Colombia). All isolates were spore-forming, Gram-stain-positive and motile, growing aerobically at 25–55 °C (optimum ~45 °C) and at pH 1.5–4.5 (optimum pH ~3.0). Phylogenetic analysis of the 16S rRNA gene sequences of these isolates showed an almost identical sequence (99.0 % similarity) and they formed a robust cluster with the closest relative DSM 16297 with a sequence similarity of 99.0 %. Average similarity to other species of the genus was 93.0 % and average similarity to species of the genus was 90 %. In addition, the level of DNA–DNA hybridization between strain USBA-GBX-503 and DSM 16297 was 31.7 %. The genomic DNA G+C content of strain USBA-GBX-503 was 44.6 mol%. The only menaquinone was MK-7 (100.0 %). No ω-alicyclic fatty acids were detected in strain USBA-GBX-503, and the major cellular fatty acids were Cω7, anteiso-C and iso-C. Based on phenotypic and chemotaxonomic characteristics, phylogenetic analysis and DNA–DNA relatedness values, along with low levels of identity at the whole genome level (ANIb and ANIm values of <67.0 and <91.0 %, respectively), it can be concluded that strain USBA-GBX-503 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is USBA-GBX-503 (=CMPUJ UGB U503=CBMAI1927).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002718
2018-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/5/1608.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002718&mimeType=html&fmt=ahah

References

  1. Nicolaus B, Improta R, Manca MC, Lama L, Esposito E et al. Alicyclobacilli from an unexplored geothermal soil in Antarctica: Mount Rittmann. Polar Biol 1998; 19:133–141 [View Article]
    [Google Scholar]
  2. Goto K, Mochida K, Kato Y, Asahara M, Fujita R et al. Proposal of six species of moderately thermophilic, acidophilic, endospore-forming bacteria: Alicyclobacillus contaminans sp. nov., Alicyclobacillus fastidiosus sp. nov., Alicyclobacillus kakegawensis sp. nov., Alicyclobacillus macrosporangiidus sp. nov., Alicyclobacillus sacchari sp. nov. and Alicyclobacillus shizuokensis sp. nov. Int J Syst Evol Microbiol 2007; 57:1276–1285 [View Article][PubMed]
    [Google Scholar]
  3. Wisotzkey JD, Jurtshuk P, Fox GE, Deinhard G, Poralla K. Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Int J Syst Bacteriol 1992; 42:263–269 [View Article][PubMed]
    [Google Scholar]
  4. Albuquerque L, Rainey FA, Chung AP, Sunna A, Nobre MF et al. Alicyclobacillus hesperidum sp. nov. and a related genomic species from solfataric soils of São Miguel in the Azores. Int J Syst Evol Microbiol 2000; 50:451–457 [View Article][PubMed]
    [Google Scholar]
  5. Matsubara H, Goto K, Matsumura T, Mochida K, Iwaki M et al. Alicyclobacillus acidiphilus sp. nov., a novel thermo-acidophilic, omega-alicyclic fatty acid-containing bacterium isolated from acidic beverages. Int J Syst Evol Microbiol 2002; 52:1681–1685 [View Article][PubMed]
    [Google Scholar]
  6. Tsuruoka N, Isono Y, Shida O, Hemmi H, Nakayama T et al. Alicyclobacillus sendaiensis sp. nov., a novel acidophilic, slightly thermophilic species isolated from soil in Sendai, Japan. Int J Syst Evol Microbiol 2003; 53:1081–1084 [View Article][PubMed]
    [Google Scholar]
  7. Simbahan J, Drijber R, Blum P. Alicyclobacillus vulcanalis sp. nov., a thermophilic, acidophilic bacterium isolated from Coso Hot Springs, California, USA. Int J Syst Evol Microbiol 2004; 54:1703–1707 [View Article][PubMed]
    [Google Scholar]
  8. Karavaiko GI, Bogdanova TI, Tourova TP, Kondrat'eva TF, Tsaplina IA et al. Reclassification of 'Sulfobacillus thermosulfidooxidans subsp. thermotolerans' strain K1 as Alicyclobacillus tolerans sp. nov. and Sulfobacillus disulfidooxidans Dufresne et al. 1996 as Alicyclobacillus disulfidooxidans comb. nov., and emended description of the genus Alicyclobacillus. Int J Syst Evol Microbiol 2005; 55:941–947 [View Article][PubMed]
    [Google Scholar]
  9. Goto K, Matsubara H, Mochida K, Matsumura T, Hara Y et al. Alicyclobacillus herbarius sp. nov., a novel bacterium containing omega-cycloheptane fatty acids, isolated from herbal tea. Int J Syst Evol Microbiol 2002; 52:109–113 [View Article][PubMed]
    [Google Scholar]
  10. Goto K, Mochida K, Asahara M, Suzuki M, Kasai H et al. Alicyclobacillus pomorum sp. nov., a novel thermo-acidophilic, endospore-forming bacterium that does not possess omega-alicyclic fatty acids, and emended description of the genus Alicyclobacillus. Int J Syst Evol Microbiol 2003; 53:1537–1544 [View Article][PubMed]
    [Google Scholar]
  11. Jiang CY, Liu Y, Liu YY, You XY, Guo X et al. Alicyclobacillus ferrooxydans sp. nov., a ferrous-oxidizing bacterium from solfataric soil. Int J Syst Evol Microbiol 2008; 58:2898–2903 [View Article][PubMed]
    [Google Scholar]
  12. Guo X, You XY, Liu LJ, Zhang JY, Liu SJ et al. Alicyclobacillus aeris sp. nov., a novel ferrous- and sulfur-oxidizing bacterium isolated from a copper mine. Int J Syst Evol Microbiol 2009; 59:2415–2420 [View Article][PubMed]
    [Google Scholar]
  13. Kusube M, Sugihara A, Moriwaki Y, Ueoka T, Shimane Y et al. Alicyclobacillus cellulosilyticus sp. nov., a thermophilic, cellulolytic bacterium isolated from steamed Japanese cedar chips from a lumbermill. Int J Syst Evol Microbiol 2014; 64:2257–2263 [View Article][PubMed]
    [Google Scholar]
  14. Zhang B, Wu YF, Song JL, Huang ZS, Wang BJ et al. Alicyclobacillus fodiniaquatilis sp. nov., isolated from acid mine water. Int J Syst Evol Microbiol 2015; 65:4915–4920 [View Article][PubMed]
    [Google Scholar]
  15. Nakano C, Takahashi N, Tanaka N, Okada S. Alicyclobacillus dauci sp. nov., a slightly thermophilic, acidophilic bacterium isolated from a spoiled mixed vegetable and fruit juice product. Int J Syst Evol Microbiol 2015; 65:716–722 [View Article][PubMed]
    [Google Scholar]
  16. Bevilacqua A, Mischitelli M, Pietropaolo V, Ciuffreda E, Sinigaglia M et al. Genotypic and phenotypic heterogeneity in Alicyclobacillus acidoterrestris: a contribution to species characterization. PLoS One 2015; 10:e0141228 [View Article][PubMed]
    [Google Scholar]
  17. Delgado-Serrano L, López G, Bohorquez LC, Bustos JR, Rubiano C et al. Neotropical Andes hot springs harbor diverse and distinct planktonic microbial communities. FEMS Microbiol Ecol 2014; 89:56–66 [View Article][PubMed]
    [Google Scholar]
  18. Itoh T, Suzuki K, Sanchez PC, Nakase T. Caldisphaera lagunensis gen. nov., sp. nov., a novel thermoacidophilic crenarchaeote isolated from a hot spring at Mt Maquiling, Philippines. Int J Syst Evol Microbiol 2003; 53:1149–1154 [View Article][PubMed]
    [Google Scholar]
  19. Imhoff-Stuckle D, Pfennig N. Isolation and characterization of a nicotinic acid-degrading sulfate-reducing bacterium, Desulfococcus niacini sp. nov. Arch Microbiol 1983; 136:194–198 [View Article]
    [Google Scholar]
  20. Manning HL. New medium for isolating iron-oxidizing and heterotrophic acidophilic bacteria from acid mine drainage. Appl Microbiol 1975; 30:1010–1016[PubMed]
    [Google Scholar]
  21. Baena S, Perdomo N, Carvajal C, Díaz C, Patel BK. Desulfosoma caldarium gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a terrestrial hot spring. Int J Syst Evol Microbiol 2011; 61:732–736 [View Article][PubMed]
    [Google Scholar]
  22. Rubiano-Labrador C, Baena S, Díaz-Cárdenas C, Patel BK. Caloramator quimbayensis sp. nov., an anaerobic, moderately thermophilic bacterium isolated from a terrestrial hot spring. Int J Syst Evol Microbiol 2013; 63:1396–1402 [View Article][PubMed]
    [Google Scholar]
  23. Slobodkin AI, Tourova TP, Kuznetsov BB, Kostrikina NA, Chernyh NA et al. Thermoanaerobacter siderophilus sp. nov., a novel dissimilatory Fe(III)-reducing, anaerobic, thermophilic bacterium. Int J Syst Bacteriol 1999; 49:1471–1478 [View Article][PubMed]
    [Google Scholar]
  24. Cord-Ruwisch R. A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 1985; 4:33–36 [View Article]
    [Google Scholar]
  25. Hungate RE. Chapter IV A roll tube method for cultivation of strict anaerobes. In Norris JR, Ribbons DW. (editors) Methods in Microbiology London: Academic press, inc; 1979 pp. 117–132
    [Google Scholar]
  26. Vos P, Garrity G, Jones D, Krieg N, Ludwig W et al. Phylum XIII. Firmicutes Gibbons and Murray 1978, 5 (Firmacutes [sic] Gibbons and Murray 1978, 5). In Bergey’s Manual® of Systematic Bacteriology New York: Springer; 2009 pp. 19–1317
    [Google Scholar]
  27. Karavaĭko GI, Krasil'nikova EN, Tsaplina IA, Bogdanova TI, Zakharchuk LM. Growth and carbohydrate metabolism of sulfobacilli. Microbiology 2001; 70:245–250 [View Article][PubMed]
    [Google Scholar]
  28. Brink RH, Dubach P, Lynch DL. Measurement of carbohydrates in soil hydrolyzates with anthrone. Soil Sci 1960; 89:157–166 [View Article]
    [Google Scholar]
  29. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72:248–254 [View Article][PubMed]
    [Google Scholar]
  30. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  31. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982; 16:584–586[PubMed]
    [Google Scholar]
  32. Díaz-Cárdenas C, Patel BK, Baena S. Tistlia consotensis gen. nov., sp. nov., an aerobic, chemoheterotrophic, free-living, nitrogen-fixing alphaproteobacterium, isolated from a Colombian saline spring. Int J Syst Evol Microbiol 2010; 60:1437–1443 [View Article][PubMed]
    [Google Scholar]
  33. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004; 5:113 [View Article][PubMed]
    [Google Scholar]
  34. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  35. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  36. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  37. De Bruyne K, Slabbinck B, Waegeman W, Vauterin P, De Baets B et al. Bacterial species identification from MALDI-TOF mass spectra through data analysis and machine learning. Syst Appl Microbiol 2011; 34:20–29 [View Article][PubMed]
    [Google Scholar]
  38. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  39. Bushnell B. 2016; BBTools software package. https://sourceforge.net/projects/bbmap/ [accessed 2016]
  40. Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Burton JN et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci USA 2011; 108:1513–1518 [View Article][PubMed]
    [Google Scholar]
  41. Huntemann M, Ivanova NN, Mavromatis K, Tripp HJ, Paez-Espino D et al. The standard operating procedure of the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v.4). Stand Genomic Sci 2015; 10:86 [View Article][PubMed]
    [Google Scholar]
  42. Chen IA, Markowitz VM, Chu K, Palaniappan K, Szeto E et al. IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Res 2017; 45:D507–D516 [View Article][PubMed]
    [Google Scholar]
  43. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002718
Loading
/content/journal/ijsem/10.1099/ijsem.0.002718
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error