1887

Abstract

Five Gram-stain-negative, rod-shaped, none-spore-forming isolates were obtained from biofilms on different sites of a milking machine in Germany. Another strain with similar morphological characteristics was isolated from dirty dishes. Based on phylogenetic analysis of the 16S rRNA and genes, all isolates were assigned to the genus , but were divided into three different groups. Chemotaxonomic characterization of the isolates led to the detection of iso-C and anteiso-C as the predominant cellular fatty acids, as well as small amounts of the hydroxyl fatty acids iso-C 3-OH, C 3-OH and iso-C 3-OH. One group could be assigned to the species , while the genome sequences of two groups displayed average nucleotide identity values of less than 94 % between each other and the genome sequences of the next related type strains ATCC 13637 and DSM 14405. Further phylogenetic, phenotypic and chemotaxonomic analyses enabled the differentiation of these strains from these closely related species. They are therefore considered to represent two novel species, for which the names and are proposed, with strains M15 (=DSM 104152=LMG29943) and WS40 (=DSM28278=LMG29942) as type strains.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002732
2018-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/6/1830.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002732&mimeType=html&fmt=ahah

References

  1. Palleroni NJ, Bradbury JF. Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983. Int J Syst Bacteriol 1993; 43:606–609 [View Article][PubMed]
    [Google Scholar]
  2. Hugh R, Ryschenkow E. Pseudomonas maltophilia, an alcaligenes-like species. J Gen Microbiol 1961; 26:123–132 [View Article][PubMed]
    [Google Scholar]
  3. Swings J, de Vos P, van den Mooter M, De Ley J. Transfer of Pseudomonas maltophilia Hugh 1981 to the genus Xanthomonas as Xanthomonas maltophilia (Hugh 1981) comb. nov. Int J Syst Bacteriol 1983; 33:409–413 [View Article]
    [Google Scholar]
  4. Berg G, Roskot N, Smalla K. Genotypic and phenotypic relationships between clinical and environmental isolates of Stenotrophomonas maltophilia. J Clin Microbiol 1999; 37:3594–3600[PubMed]
    [Google Scholar]
  5. Hauben L, Vauterin L, Moore ER, Hoste B, Swings J. Genomic diversity of the genus Stenotrophomonas. Int J Syst Bacteriol 1999; 49:1749–1760 [View Article][PubMed]
    [Google Scholar]
  6. Finkmann W, Altendorf K, Stackebrandt E, Lipski A. Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol 2000; 50:273–282 [View Article][PubMed]
    [Google Scholar]
  7. Parte AC. LPSN—list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014; 42:D613–D616 [View Article][PubMed]
    [Google Scholar]
  8. Kaiser S, Biehler K, Jonas D. A Stenotrophomonas maltophilia multilocus sequence typing scheme for inferring population structure. J Bacteriol 2009; 191:2934–2943 [View Article][PubMed]
    [Google Scholar]
  9. Berger S, Stamminger R, Schünemann WM, Lipski A. Development of a method for the analysis of microbial load reduction factors on dishes cleaned by hand and by machine. Tenside Surf Det 2015; 52:206–212 [View Article]
    [Google Scholar]
  10. Verhagen P, de Gelder L, Hoefman S, de Vos P, Boon N. Planktonic versus biofilm catabolic communities: importance of the biofilm for species selection and pesticide degradation. Appl Environ Microbiol 2011; 77:4728–4735 [View Article][PubMed]
    [Google Scholar]
  11. Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA et al. (editors) Manual of Methods for General Bacteriology Washington: American Society for Microbiology; 1981
    [Google Scholar]
  12. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993[PubMed]
    [Google Scholar]
  13. Hugh R, Leifson E. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram negative bacteria. J Bacteriol 1953; 66:24–26[PubMed]
    [Google Scholar]
  14. Sasser M. Identification of bacteria through fatty acid analysis. In Klement Z, Rudolph K, Sands DC. (editors) Methods in Phytobacteriology Budapest: Akademiai Kaido; 1990 pp. 199–204
    [Google Scholar]
  15. Wiertz R, Schulz SC, Müller U, Kämpfer P, Lipski A. Corynebacterium frankenforstense sp. nov. and Corynebacterium lactis sp. nov., isolated from raw cow milk. Int J Syst Evol Microbiol 2013; 63:4495–4501 [View Article][PubMed]
    [Google Scholar]
  16. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  17. Pitcher DG, Saunders NA, Owen RJ. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 1989; 8:151–156 [View Article]
    [Google Scholar]
  18. Ziemke F, Höfle MG, Lalucat J, Rosselló-Mora R. Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 1998; 48:179–186 [View Article][PubMed]
    [Google Scholar]
  19. Dodt M, Roehr JT, Ahmed R, Dieterich C. FLEXBAR - Flexible barcode and adapter processing for next-generation sequencing platforms. Biology 2012; 1:895–905 [View Article][PubMed]
    [Google Scholar]
  20. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  21. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article][PubMed]
    [Google Scholar]
  22. Krumsiek J, Arnold R, Rattei T. Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 2007; 23:1026–1028 [View Article][PubMed]
    [Google Scholar]
  23. Muyzer G, Teske A, Wirsen CO, Jannasch HW. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol 1995; 164:165–172 [View Article][PubMed]
    [Google Scholar]
  24. Svensson-Stadler LA, Mihaylova SA, Moore ER. Stenotrophomonas interspecies differentiation and identification by gyrB sequence analysis. FEMS Microbiol Lett 2012; 327:15–24 [View Article][PubMed]
    [Google Scholar]
  25. Derichs J, Kämpfer P, Lipski A. Pedobacter nutrimenti sp. nov., isolated from chilled food. Int J Syst Evol Microbiol 2014; 64:1310–1316 [View Article][PubMed]
    [Google Scholar]
  26. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  27. Davenport KW, Daligault HE, Minogue TD, Broomall SM, Bruce DC et al. Complete genome sequence of Stenotrophomonas maltophilia type strain 810-2 (ATCC 13637). Genome Announc 2014; 2:e0097414 [View Article][PubMed]
    [Google Scholar]
  28. Alavi P, Starcher MR, Thallinger GG, Zachow C, Müller H et al. Stenotrophomonas comparative genomics reveals genes and functions that differentiate beneficial and pathogenic bacteria. BMC Genomics 2014; 15:482 [View Article][PubMed]
    [Google Scholar]
  29. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  30. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article][PubMed]
    [Google Scholar]
  31. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  32. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  33. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M et al. Versatile and open software for comparing large genomes. Genome Biol 2004; 5:2478–2483 [View Article][PubMed]
    [Google Scholar]
  34. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article][PubMed]
    [Google Scholar]
  35. Borodovsky M, McIninch J. GeneMark: parallel gene recognition for both DNA strands. Comput Chem 1993; 17:123–133 [View Article]
    [Google Scholar]
  36. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016:e1900v1
    [Google Scholar]
  37. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  38. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  39. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  40. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  41. Ramos PL, van Trappen S, Thompson FL, Rocha RC, Barbosa HR et al. Screening for endophytic nitrogen-fixing bacteria in Brazilian sugar cane varieties used in organic farming and description of Stenotrophomonas pavanii sp. nov. Int J Syst Evol Microbiol 2011; 61:926–931 [View Article][PubMed]
    [Google Scholar]
  42. Coenye T, Vanlaere E, Falsen E, Vandamme P. Stenotrophomonas africana Drancourt et al. 1997 is a later synonym of Stenotrophomonas maltophilia (Hugh 1981) Palleroni and Bradbury 1993. Int J Syst Evol Microbiol 2004; 2004:1235–1237 [View Article][PubMed]
    [Google Scholar]
  43. Patil PP, Midha S, Kumar S, Patil PB. Genome sequence of type strains of genus Stenotrophomonas. Front Microbiol 2016; 7:309 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002732
Loading
/content/journal/ijsem/10.1099/ijsem.0.002732
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error