1887

Abstract

A Gram-stain-positive, aerobic, motile with peritrichous flagella, rod-shaped bacterium, designated CFH S0170, was isolated from a soil sample collected from Catba island in Ha Long Bay, Hai Phong City, Vietnam. Comparison of the 16S rRNA gene sequences showed that strain CFH S0170 belonged to the genus and showed closest relationship with CCUG 53270 (98.1 % similarity). Phylogenetic analysis demonstrated that the novel candidate formed a coherent branch with CCUG 53270 and YN2. Furthermore, the novel strain shared 87.2 % gene sequence similarity with CCUG 53270. Growth of strain CFH S0170 occurred at 10–40 °C, pH 6.0–8.0 and with 0–2.0 % (w/v) NaCl. Strain CFH S0170 contained mannose, glucose and rhamnose as the major whole-cell sugars. The cell-wall peptidoglycan contained -diaminopimelic acid, glutamic acid, lysine and aspartic acid. The polar lipid profile contained diphosphatidylglycerol, phosphatidylethanolamine, glycolipids and phospholipids. The dominant cellular fatty acids included anteiso-C and C. The genomic DNA G+C content was 50.9 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic analysis, strain CFH S0170 is affiliated to the genus , but could be distinguished from other valid species of this genus. It is concluded that strain CFH S0170 should be considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CFH S0170 (=KCTC 33624=BCRC 80802).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002754
2018-07-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/7/2145.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002754&mimeType=html&fmt=ahah

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie van Leeuwenhoek 1994; 64:253–260 [View Article]
    [Google Scholar]
  2. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K et al. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 1997; 47:289–298 [View Article][PubMed]
    [Google Scholar]
  3. De Vos P, Ludwig W, Schleifer KH, Whitman WB. Paenibacillaceae fam. nov. In list of new names and new combinations previously effectively, but not validly, published, validation list no. 132. Int J Syst Evol Microbiol 2010; 60:469–472
    [Google Scholar]
  4. Scheldeman P, Goossens K, Rodriguez-Diaz M, Pil A, Goris J et al. Paenibacillus lactis sp. nov., isolated from raw and heat-treated milk. Int J Syst Evol Microbiol 2004; 54:885–891 [View Article][PubMed]
    [Google Scholar]
  5. Park DS, Jeong WJ, Lee KH, Oh HW, Kim BC et al. Paenibacillus pectinilyticus sp. nov., isolated from the gut of Diestrammena apicalis. Int J Syst Evol Microbiol 2009; 59:1342–1347 [View Article][PubMed]
    [Google Scholar]
  6. Cao Y, Chen F, Li Y, Wei S, Wang G. Paenibacillus ferrarius sp. nov., isolated from iron mineral soil. Int J Syst Evol Microbiol 2015; 65:165–170 [View Article][PubMed]
    [Google Scholar]
  7. Baik KS, Lim CH, Choe HN, Kim EM, Seong CN. Paenibacillus rigui sp. nov., isolated from a freshwater wetland. Int J Syst Evol Microbiol 2011; 61:529–534 [View Article][PubMed]
    [Google Scholar]
  8. Carro L, Flores-Félix JD, Ramírez-Bahena MH, García-Fraile P, Martínez-Hidalgo P et al. Paenibacillus lupini sp. nov., isolated from nodules of Lupinus albus. Int J Syst Evol Microbiol 2014; 64:3028–3033 [View Article][PubMed]
    [Google Scholar]
  9. Zhang L, Gao JS, Zhang S, Ali Sheirdil R, Wang XC et al. Paenibacillus rhizoryzae sp. nov., isolated from rice rhizosphere. Int J Syst Evol Microbiol 2015; 65:3053–3059 [View Article][PubMed]
    [Google Scholar]
  10. Logan NA, Berge O, Bishop AH, Busse HJ, de Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59:2114–2121 [View Article][PubMed]
    [Google Scholar]
  11. Ming H, Yin YR, Li S, Nie GX, Yu TT et al. Thermus caliditerrae sp. nov., a novel thermophilic species isolated from a geothermal area. Int J Syst Evol Microbiol 2014; 64:650–656 [View Article][PubMed]
    [Google Scholar]
  12. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  13. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007; 57:1424–1428 [View Article][PubMed]
    [Google Scholar]
  14. Da Mota FF, Gomes EA, Paiva E, Rosado AS, Seldin L et al. Use of rpoB gene analysis for identification of nitrogen-fixing Paenibacillus species as an alternative to the 16S rRNA gene. Lett Appl Microbiol 2004; 39:34–40 [View Article][PubMed]
    [Google Scholar]
  15. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  16. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  17. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  19. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  20. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  21. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  22. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article]
    [Google Scholar]
  23. Cerny G. Studies on the aminopeptidase test for the distinction of gram-negative from gram-positive bacteria. Eur J Appl Microbiol Biotechnol 1978; 5:113–122 [View Article]
    [Google Scholar]
  24. Leifson E. Atlas of bacterial flagellation. Q Rev Biol 1960; 242:
    [Google Scholar]
  25. Nie GX, Ming H, Li S, Zhou EM, Cheng J et al. Amycolatopsis dongchuanensis sp. nov., an actinobacterium isolated from soil. Int J Syst Evol Microbiol 2012; 62:2650–2656 [View Article][PubMed]
    [Google Scholar]
  26. Nie GX, Ming H, Li S, Zhou EM, Cheng J et al. Geodermatophilus nigrescens sp. nov., isolated from a dry-hot valley. Antonie van Leeuwenhoek 2012; 101:811–817 [View Article][PubMed]
    [Google Scholar]
  27. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703–704 [View Article][PubMed]
    [Google Scholar]
  28. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [View Article][PubMed]
    [Google Scholar]
  29. Roberts FJ. Biochemical tests for identification of medical bacteria, Jean F. MacFaddin, The Williams and Wilkins Co., Washington, D.C. Clin Biochem 1976; 9:178 [View Article]
    [Google Scholar]
  30. Uttley AHC, Collins CH. Cowan and Steel's manual for the identification of medical bacteria. 3rd edn. J Hosp Infect 1993; 24:332 [View Article]
    [Google Scholar]
  31. Al-Tai A, Kim B, Kim SB, Manfio GP, Goodfellow M. Streptomyces malaysiensis sp. nov., a new Streptomycete species with rugose, ornamented spores. Int J Syst Bacteriol 1999; 49:1395–1402 [View Article][PubMed]
    [Google Scholar]
  32. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20:16
    [Google Scholar]
  33. Tang SK, Wang Y, Chen Y, Lou K, Cao LL et al. Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. Int J Syst Evol Microbiol 2009; 59:2025–2032 [View Article][PubMed]
    [Google Scholar]
  34. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Method Microbiol 1987; 19:161–207
    [Google Scholar]
  35. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  36. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983; 54:31–36 [View Article][PubMed]
    [Google Scholar]
  37. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  38. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [View Article]
    [Google Scholar]
  39. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979; 47:87–95 [View Article]
    [Google Scholar]
  40. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  41. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  42. Christensen H, Angen O, Mutters R, Olsen JE, Bisgaard M. DNA–DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol 2000; 50:1095–1102 [View Article][PubMed]
    [Google Scholar]
  43. Stackebrandt E, Goebel BM. Taxonomic Note: a place for DNA-DNA reassociation and 16S rRNA Sequence analysis in the present species definition in Bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002754
Loading
/content/journal/ijsem/10.1099/ijsem.0.002754
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error