1887

Abstract

A Gram-stain-negative, non-flagellated, short rod-shaped bacterium, designated XY-R6, was isolated from the rhizosphere soil of a mangrove plant, (L.) Druce, in Mai Po Nature Reserve, Hong Kong. Growth of strain XY-R6 was observed at pH 5.0–9.5 (optimum 6.5–8.0), between 8 and 42 °C (optimum 28–34 °C), and in the presence of 0–9.5 % (w/v) NaCl (optimum 1–4 %). The predominant isoprenoid quinone was ubiquinone-10. The major fatty acids were summed feature 8 (Cω6 and/or Cω7) (55.61 %), Ccyclo8 (21.59 %) and C (11.24 %). The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, aminolipid, phosphatidylcholine and diphosphatidylglycerol. The genomic DNA G+C content of strain XY-R6 was 69.3 mol%. Phylogenetic analyses, based on 16S rRNA gene sequences, revealed that strain XY-R6 belonged to the family of the class and formed a distinct lineage, showing the highest gene sequence similarities to the members of genus (94.5–94.3 %), followed by the genera (94.3 %), (93.8–92.5 %), (93.8 %) and (93.7 %). Similarities to other genera within the family were below 94.0 %. Based on comprehensive phenotypic, phylogenetic and chemotaxonomic characterization, it is indicated that strain XY-R6 represents a novel species of a new genus in the family , for which the name gen. nov., sp. nov. is proposed, with XY-R6 (=MCCC 1K01498=KCTC 52266=DSM 104294) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002773
2018-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/7/2158.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002773&mimeType=html&fmt=ahah

References

  1. Macián MC, Arahal DR, Garay E, Ludwig W, Schleifer KH et al. Thalassobacter stenotrophicus gen. nov., sp. nov., a novel marine alpha-proteobacterium isolated from Mediterranean sea water. Int J Syst Evol Microbiol 2005; 55:105–110 [View Article][PubMed]
    [Google Scholar]
  2. González JM, Simó R, Massana R, Covert JS, Casamayor EO et al. Bacterial community structure associated with a dimethylsulfoniopropionate-producing North Atlantic algal bloom. Appl Environ Microbiol 2000; 66:4237–4246 [View Article][PubMed]
    [Google Scholar]
  3. Selje N, Simon M, Brinkhoff T. A newly discovered Roseobacter cluster in temperate and polar oceans. Nature 2004; 427:445–448 [View Article][PubMed]
    [Google Scholar]
  4. Buchan A, González JM, Moran MA. Overview of the marine Roseobacter lineage. Appl Environ Microbiol 2005; 71:5665–5677 [View Article][PubMed]
    [Google Scholar]
  5. Brinkhoff T, Giebel HA, Simon M. Diversity, ecology, and genomics of the Roseobacter clade: a short overview. Arch Microbiol 2008; 189:531–539 [View Article][PubMed]
    [Google Scholar]
  6. Park S, Park JM, Lee KC, Bae KS, Yoon JH. Boseongicola aestuarii gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014; 64:2618–2624 [View Article][PubMed]
    [Google Scholar]
  7. Suresh G, Sasikala C, Ramana C. Reclassification of Gemmobacter changlensis to a new genus as Cereibacter changlensis gen. nov., comb. nov. Int J Syst Evol Microbiol 2015; 65:794–798 [View Article][PubMed]
    [Google Scholar]
  8. Park S, Park JM, Kang CH, Kim SG, Yoon JH. Pseudoseohaeicola caenipelagi gen. nov., sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2015; 65:1819–1824 [View Article][PubMed]
    [Google Scholar]
  9. Park S, Yoon SY, Ha MJ, Yoon JH. Jindonia aestuariivivens gen. nov., sp. nov., isolated from a tidal flat on the south-western sea in Republic of Korea. J Microbiol 2017; 55:421–427 [View Article][PubMed]
    [Google Scholar]
  10. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acids Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp. 115–175
    [Google Scholar]
  11. Xu Y, Li Q, Tian R, Lai Q, Zhang Y. Pseudovibrio hongkongensis sp. nov., isolated from a marine flatworm. Antonie van Leeuwenhoek 2015; 108:127–132 [View Article][PubMed]
    [Google Scholar]
  12. Liang X, Lin H, Wang K, Liao Y, Lai Q et al. Altererythrobacter salegens sp. nov., a slightly halophilic bacterium isolated from surface sediment. Int J Syst Evol Microbiol 2017; 67:909–913 [View Article][PubMed]
    [Google Scholar]
  13. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  14. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  15. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  18. Rzhetsky A, Nei M. Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 1992; 35:367–375 [View Article][PubMed]
    [Google Scholar]
  19. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  20. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119 [View Article][PubMed]
    [Google Scholar]
  21. Wu M, Eisen JA. A simple, fast, and accurate method of phylogenomic inference. Genome Biol 2008; 9:R151 [View Article][PubMed]
    [Google Scholar]
  22. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002; 30:3059–3066 [View Article][PubMed]
    [Google Scholar]
  23. Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007; 56:564–577 [View Article][PubMed]
    [Google Scholar]
  24. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  25. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  26. Park S, Jung YT, Yoon JH. Wenxinia saemankumensis sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014; 64:1958–1963 [View Article][PubMed]
    [Google Scholar]
  27. Ying JY, Wang BJ, Dai X, Yang SS, Liu SJ et al. Wenxinia marina gen. nov., sp. nov., a novel member of the Roseobacter clade isolated from oilfield sediments of the South China Sea. Int J Syst Evol Microbiol 2007; 57:1711–1716 [View Article][PubMed]
    [Google Scholar]
  28. Lai PY, Miao L, Lee OO, Liu LL, Zhou XJ et al. Profundibacterium mesophilum gen. nov., sp. nov., a novel member in the family Rhodobacteraceae isolated from deep-sea sediment in the Red Sea, Saudi Arabia. Int J Syst Evol Microbiol 2013; 63:1007–1012 [View Article][PubMed]
    [Google Scholar]
  29. Jiang L, Xu H, Shao Z, Long M. Defluviimonas indica sp. nov., a marine bacterium isolated from a deep-sea hydrothermal vent environment. Int J Syst Evol Microbiol 2014; 64:2084–2088 [View Article][PubMed]
    [Google Scholar]
  30. Cho JC, Giovannoni SJ. Oceanicola granulosus gen. nov., sp. nov. and Oceanicola batsensis sp. nov., poly-beta-hydroxybutyrate-producing marine bacteria in the order 'Rhodobacterales'. Int J Syst Evol Microbiol 2004; 54:1129–1136 [View Article][PubMed]
    [Google Scholar]
  31. Zheng JW, Chen YG, Zhang J, Ni YY, Li WJ et al. Description of Catellibacterium caeni sp. nov., reclassification of Rhodobacter changlensis Anil Kumar et al. 2007 as Catellibacterium changlense comb. nov. and emended description of the genus Catellibacterium. Int J Syst Evol Microbiol 2011; 61:1921–1926 [View Article][PubMed]
    [Google Scholar]
  32. Jung YT, Park S, Lee JS, Yoon JH. Defluviimonas aquaemixtae sp. nov., isolated from the junction between a freshwater spring and the ocean. Int J Syst Evol Microbiol 2014; 64:4191–4197 [View Article][PubMed]
    [Google Scholar]
  33. Foesel BU, Drake HL, Schramm A. Defluviimonas denitrificans gen. nov., sp. nov., and Pararhodobacter aggregans gen. nov., sp. nov., non-phototrophic Rhodobacteraceae from the biofilter of a marine aquaculture. Syst Appl Microbiol 2011; 34:498–502 [View Article][PubMed]
    [Google Scholar]
  34. Math RK, Jin HM, Jeong SH, Jeon CO. Defluviimonas aestuarii sp. nov., a marine bacterium isolated from a tidal flat, and emended description of the genus Defluviimonas Foesel et al. 2011. Int J Syst Evol Microbiol 2013; 63:2895–2900 [View Article][PubMed]
    [Google Scholar]
  35. Pan XC, Geng S, Lv XL, Mei R, Jiangyang JH et al. Defluviimonas alba sp. nov., isolated from an oilfield. Int J Syst Evol Microbiol 2015; 65:1805–1811 [View Article][PubMed]
    [Google Scholar]
  36. Dong X, Cai M. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  37. Acard JF. The disc susceptibility test. In Lorian V. (editor) Antibiotics in Laboratory and Medicine Baltimore: Williams & Wilkins; 1980 pp. 24–54
    [Google Scholar]
  38. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  39. Wu YH, Xu L, Meng FX, Zhang DS, Wang CS et al. Altererythrobacter atlanticus sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2014; 64:116–121 [View Article][PubMed]
    [Google Scholar]
  40. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  41. Sasser M. Identification of Bacteria By Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  42. Kates M. Techniques of Lipidology, 2nd ed. rev. Amsterdam: Elsevier; 1986 pp. 106241–107246
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002773
Loading
/content/journal/ijsem/10.1099/ijsem.0.002773
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error