1887

Abstract

A novel Gram-stain-negative, motile by gliding and straight rod-shaped bacterial strain, designated HMF3635, was isolated from seawater of the East Sea, Republic of Korea. Strain HMF3635 grew optimally on marine agar at 30 °C, pH 7.0–8.0 and 2.0 % NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain HMF3635 belonged to the genus Maribacter and was most closely related to Maribacter arenosus CAU 1321 (96.4 % sequence similarity) and Maribacter polysiphoniae KMM 6151 (96.0 %). The major fatty acids were iso-C15 : 0, iso-C15 : 1 G and iso-C17 : 0 3-OH. The only respiratory quinone was menaquinone 6. The major polar lipids were phosphatidylethanolamine, four unidentified aminolipids, one unidentified phospholipid and three unidentified polar lipids. The DNA G+C content was 38.7 mol%. On the basis of the evidence presented in this study, strain HMF3635 represents a novel species of the genus Maribacter , for which the name Maribacter maritimus sp. nov. is proposed. The type strain of the species is strain HMF3635 (=KCTC 52399=NBRC 112671).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002843
2018-06-12
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/8/2431.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002843&mimeType=html&fmt=ahah

References

  1. Nedashkovskaya OI, Kim SB, Han SK, Lysenko AM, Rohde M et al. Maribacter gen. nov., a new member of the family Flavobacteriaceae, isolated from marine habitats, containing the species Maribacter sedimenticola sp. nov., Maribacter aquivivus sp. nov., Maribacter orientalis sp. nov. and Maribacter ulvicola sp. nov. Int J Syst Evol Microbiol 2004; 54:1017–1023 [View Article][PubMed]
    [Google Scholar]
  2. Jin M, Kim M, Kim JY, Song HS, Cha IT et al. Maribacter pelagius sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2017; 67:3834–3839 [View Article][PubMed]
    [Google Scholar]
  3. Fang C, Wu YH, Xamxidin M, Wang CS, Xu XW. Maribacter cobaltidurans sp. nov., a heavy-metal-tolerant bacterium isolated from deep-sea sediment. Int J Syst Evol Microbiol 2017; 67:5261–5267 [View Article][PubMed]
    [Google Scholar]
  4. Kim KH, Jin HM, Jeong HI, Jeon CO. Maribacter lutimaris sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2016; 66:1773–1778 [View Article][PubMed]
    [Google Scholar]
  5. Lo N, Jin HM, Jeon CO. Maribacter aestuarii sp. nov., isolated from tidal flat sediment, and an emended description of the genus Maribacter. Int J Syst Evol Microbiol 2013; 63:3409–3414 [View Article][PubMed]
    [Google Scholar]
  6. Thongphrom C, Kim JH, Kim W. Maribacter arenosus sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2016; 66:4826–4831 [View Article][PubMed]
    [Google Scholar]
  7. Jung YT, Lee JS, Yoon JH. Maribacter caenipelagi sp. nov., a member of the Flavobacteriaceae isolated from a tidal flat sediment of the Yellow Sea in Korea. Antonie van Leeuwenhoek 2014; 106:733–742 [View Article][PubMed]
    [Google Scholar]
  8. Park S, Jung YT, Park JM, Won SM, Yoon JH. Maribacter confluentis sp. nov., isolated from the junction between the ocean and a freshwater spring. Int J Syst Evol Microbiol 2015; 65:3079–3085 [View Article][PubMed]
    [Google Scholar]
  9. Yoon JH, Kang SJ, Lee SY, Lee CH, Oh TK. Maribacter dokdonensis sp. nov., isolated from sea water off a Korean island, Dokdo. Int J Syst Evol Microbiol 2005; 55:2051–2055 [View Article][PubMed]
    [Google Scholar]
  10. Tang M, Wang G, Xiang W, Chen C, Wu J et al. Maribacter flavus sp. nov., isolated from a cyanobacterial culture pond. Int J Syst Evol Microbiol 2015; 65:3997–4002 [View Article][PubMed]
    [Google Scholar]
  11. Barbeyron T, Carpentier F, L'Haridon S, Schüler M, Michel G et al. Description of Maribacter forsetii sp. nov., a marine Flavobacteriaceae isolated from North Sea water, and emended description of the genus Maribacter. Int J Syst Evol Microbiol 2008; 58:790–797 [View Article][PubMed]
    [Google Scholar]
  12. Park S, Jung YT, Won SM, Yoon JH. Maribacter litorisediminis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016; 66:4236–4242 [View Article][PubMed]
    [Google Scholar]
  13. Cho KH, Hong SG, Cho HH, Lee YK, Chun J et al. Maribacter arcticus sp. nov., isolated from Arctic marine sediment. Int J Syst Evol Microbiol 2008; 58:1300–1303 [View Article][PubMed]
    [Google Scholar]
  14. Zhang GI, Hwang CY, Kang SH, Cho BC. Maribacter antarcticus sp. nov., a psychrophilic bacterium isolated from a culture of the Antarctic green alga Pyramimonas gelidicola. Int J Syst Evol Microbiol 2009; 59:1455–1459 [View Article][PubMed]
    [Google Scholar]
  15. Weerawongwiwat V, Kang H, Jung MY, Kim W. Maribacter chungangensis sp. nov., isolated from a green seaweed, and emended descriptions of the genus Maribacter and Maribacter arcticus. Int J Syst Evol Microbiol 2013; 63:2553–2558 [View Article][PubMed]
    [Google Scholar]
  16. Nedashkovskaya OI, Vancanneyt M, de Vos P, Kim SB, Lee MS et al. Maribacter polysiphoniae sp. nov., isolated from a red alga. Int J Syst Evol Microbiol 2007; 57:2840–2843 [View Article][PubMed]
    [Google Scholar]
  17. Jackson SA, Kennedy J, Morrissey JP, O'Gara F, Dobson AD. Maribacter spongiicola sp. nov. and Maribacter vaceletii sp. nov., isolated from marine sponges, and emended description of the genus Maribacter. Int J Syst Evol Microbiol 2015; 65:2097–2103 [View Article][PubMed]
    [Google Scholar]
  18. Nedashkovskaya OI, Kim SB, Mikhailov VV. Maribacter stanieri sp. nov., a marine bacterium of the family Flavobacteriaceae. Int J Syst Evol Microbiol 2010; 60:214–218 [View Article][PubMed]
    [Google Scholar]
  19. Hu J, Yang QQ, Ren Y, Zhang WW, Zheng G et al. Maribacter thermophilus sp. nov., isolated from an algal bloom in an intertidal zone, and emended description of the genus Maribacter. Int J Syst Evol Microbiol 2015; 65:36–41 [View Article][PubMed]
    [Google Scholar]
  20. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp. 125–175
    [Google Scholar]
  21. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617
    [Google Scholar]
  22. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  24. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  25. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  26. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  27. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  28. Brown AE. Benson’s Microbiological Application Laboratory Manual in General Microbiology, 10th ed. New York: McGraw-Hill; 2007
    [Google Scholar]
  29. Hucker GJ. A new modification and application of the gram stain. J Bacteriol 1921; 6:395–397[PubMed]
    [Google Scholar]
  30. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  31. Gonzalez JM, Saiz-Jimenez C. A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 2002; 4:770–773 [View Article][PubMed]
    [Google Scholar]
  32. Joung Y, Lee BI, Kang H, Kim H, Joh K. Chitinimonas viridis sp. nov., isolated from a mesotrophic artificial lake. Int J Syst Evol Microbiol 2014; 64:1123–1126 [View Article][PubMed]
    [Google Scholar]
  33. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  34. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  35. Collins MD. Analysis of isoprenoid quinones. In Gottschalk G. (editor) Methods in Microbiology vol. 18 New York: Academic Press; 1985 pp. 329–366
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002843
Loading
/content/journal/ijsem/10.1099/ijsem.0.002843
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error