1887

Abstract

A novel Gram-stain-variable, rod-shaped, non-motile and non-endospore-forming bacterium (strain G27) was isolated from near Dhuvaran, Gujarat, India. Based on 16S rRNA gene sequence analysis, strain G27 was identified as a member of the class Firmibacteria and was most closely related to Bacillus populi FJAT-45347 (94.9 % sequence similarity), Salipaludibacillus aurantiacus S9 (94.9 %), Salipaludibacillus neizhouensis KCTC 13187 (94.7 %), Alteribacillus iranensis DSM 23995 (94.6 %) and other Firmibacteria (<94.6 %). The DNA G+C content of strain G27 was 43.4±0.6 mol%. The cell-wall peptidoglycan contained meso-diaminopimelic acid. Polar lipids included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, one unidentified phospholipid and five unidentified lipids. The predominant isoprenoid quinone was menaquinone MK-7. Major fatty acids (>5 %) included anteiso-C15:0, iso-C15 : 0, anteiso-C17:0, C16 : 0 and iso-C16 : 0. The results of phylogenetic, chemotaxonomic and biochemical tests allowed the clear differentiation of strain G27 from all other members of the family Bacillaceae . It is therefore considered to represent a novel species of a new genus, for which the name Thalassorhabdus alkalitolerans gen. nov., sp. nov., is proposed. The type strain of Thalassorhabdus alkalitolerans is G27 (=MCC 3411=CGMCC 1.15772=KCTC 33941).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002931
2018-07-20
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/9/2969.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002931&mimeType=html&fmt=ahah

References

  1. Euzéby JP. List of prokaryotic names with standing in nomenclature; 2011 www.bacterio.cict.fr/index.html
  2. Seiler H, Wenning M, Scherer S. Domibacillus robiginosus gen. nov., sp. nov., isolated from a pharmaceutical clean room. Int J Syst Evol Microbiol 2013; 63:2054–2061 [View Article][PubMed]
    [Google Scholar]
  3. Logan NA, De Vos P. Family Bacillaceae. In Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 3 The Firmicutes Dordrecht, Heidelberg, London, New York: Bergey’s Manual Trust and Springer; 2009 p. 20
    [Google Scholar]
  4. Logan NA, Berge O, Bishop AH, Busse HJ, De Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009; 59:2114–2121 [View Article][PubMed]
    [Google Scholar]
  5. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–218 [View Article]
    [Google Scholar]
  6. Reddy SV, Aspana S, Tushar DL, Sasikala C, Ramana C. Spirochaeta sphaeroplastigenens sp. nov., a halo-alkaliphilic, obligately anaerobic spirochaete isolated from soda lake Lonar. Int J Syst Evol Microbiol 2013; 63:2223–2228 [View Article][PubMed]
    [Google Scholar]
  7. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  8. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  9. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  10. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  11. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  12. Zhang S, Li Z, Yan Y, Zhang C, Li J et al. Bacillus urumqiensis sp. nov., a moderately haloalkaliphilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol 2016; 66:2305–2312 [View Article][PubMed]
    [Google Scholar]
  13. Zhao B, Lu W, Zhang S, Liu K, Yan Y et al. Reclassification of Bacillus saliphilus as Alkalicoccus saliphilus gen. nov., comb. nov., and description of Alkalicoccus halolimnae sp. nov., a moderately halophilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol 2017; 67:1557–1563 [View Article][PubMed]
    [Google Scholar]
  14. Xue Y, Ventosa A, Wang X, Ren P, Zhou P et al. Bacillus aidingensis sp. nov., a moderately halophilic bacterium isolated from Ai-Ding salt lake in China. Int J Syst Evol Microbiol 2008; 58:2828–2832 [View Article][PubMed]
    [Google Scholar]
  15. Vishnuvardhan Reddy S, Thirumala M, Sasikala C, Venkata Ramana C. Salibacterium halotolerans gen. nov., sp. nov., a bacterium isolated from a salt pan, reclassification of Bacillus qingdaonensis as Salibacterium qingdaonense comb. nov. and Bacillus halochares as Salibacterium halochares comb. nov. Int J Syst Evol Microbiol 2015; 65:4270–4275 [View Article][PubMed]
    [Google Scholar]
  16. Wang YQ, Liu XM, Tang J, Yang GQ, Yu Z. Salibacterium lacus sp. nov., a halophilic, non-spore-forming bacterium isolated from sediment of a saline lake. Int J Syst Evol Microbiol 2018; 68:113–117 [View Article][PubMed]
    [Google Scholar]
  17. Baesman SM, Stolz JF, Kulp TR, Oremland RS. Enrichment and isolation of Bacillus beveridgei sp. nov., a facultative anaerobic haloalkaliphile from Mono Lake, California, that respires oxyanions of tellurium, selenium, and arsenic. Extremophiles 2009; 13:695–705 [View Article][PubMed]
    [Google Scholar]
  18. Sultanpuram VR, Mothe T. Salipaludibacillus aurantiacus gen. nov., sp. nov. a novel alkali tolerant bacterium, reclassification of Bacillus agaradhaerens as Salipaludibacillus agaradhaerens comb. nov. and Bacillus neizhouensis as Salipaludibacillus neizhouensis comb. nov. Int J Syst Evol Microbiol 2016; 66:2747–2753 [View Article][PubMed]
    [Google Scholar]
  19. Amoozegar MA, Shahinpei A, Makzum S, Rafieyan S, Moshtaghi Nikou M et al. Salipaludibacillus halalkaliphilus sp. nov., a moderately haloalkaliphilic bacterium from a coastal-marine wetland. Int J Syst Evol Microbiol 2018; 68:2214–2219 [View Article][PubMed]
    [Google Scholar]
  20. Daroonpunt R, Itoh T, Kudo T, Ohkuma M, Tanasupawat S. Bacillus piscicola sp. nov., isolated from Thai fish sauce (Nam-pla). Int J Syst Evol Microbiol 2016; 66:1151–1155 [View Article][PubMed]
    [Google Scholar]
  21. Didari M, Amoozegar MA, Bagheri M, Schumann P, Spröer C et al. Alteribacillus bidgolensis gen. nov., sp. nov., a moderately halophilic bacterium from a hypersaline lake, and reclassification of Bacillus persepolensis as Alteribacillus persepolensis comb. nov. Int J Syst Evol Microbiol 2012; 62:2691–2697 [View Article][PubMed]
    [Google Scholar]
  22. Azmatunnisa Begum M, Varshini V, Rahul K, Chandana A, Sasikala C et al. Description of Alteribacillus alkaliphilus sp. nov., reassignment of Bacillus iranensis (Bagheri et al. 2012) as Alteribacillus iranensis comb. nov. and emended description of the genus Alteribacillus. Int J Syst Evol Microbiol 2016; 66:4772–4778 [View Article][PubMed]
    [Google Scholar]
  23. Liu B, Liu GH, Wang XY, Wang JP, Zhu YJ et al. Bacillus populi sp. nov. isolated from Populus euphratica rhizosphere soil of the Taklamakan desert. Int J Syst Evol Microbiol 2018; 68:155–159 [View Article][PubMed]
    [Google Scholar]
  24. Chen YG, Zhang YQ, Wang YX, Liu ZX, Klenk HP et al. Bacillus neizhouensis sp. nov., a halophilic marine bacterium isolated from a sea anemone. Int J Syst Evol Microbiol 2009; 59:3035–3039 [View Article][PubMed]
    [Google Scholar]
  25. Bagheri M, Didari M, Amoozegar MA, Schumann P, Sánchez-Porro C et al. Bacillus iranensis sp. nov., a moderate halophile from a hypersaline lake. Int J Syst Evol Microbiol 2012; 62:811–816 [View Article][PubMed]
    [Google Scholar]
  26. Smibert RM, Krieg NR. General characterization. In Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA et al. (editors) Manual of Methods for General Microbiology Washington, DC: American Society for Microbiology; 1981 pp. 409–443
    [Google Scholar]
  27. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P. (editor) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  28. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Numerical taxonomy of moderately halophilic Gram-negative rods. Microbiology 1982; 128:1959–1968 [View Article]
    [Google Scholar]
  29. Hageman JH, Shankweiler GW, Wall PR, Franich K, McCowan GW et al. Single, chemically defined sporulation medium for Bacillus subtilis: growth, sporulation, and extracellular protease production. J Bacteriol 1984; 160:438–441[PubMed]
    [Google Scholar]
  30. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids MIDI, Inc; 2001 www.microbialid.com/PDF/TechNote_101.pdf
    [Google Scholar]
  31. Kates M. Techniques of Lipidology: Isolation, Analysis, and Identification of Lipids Amsterdam: Elsevier; 1986 pp. 330–348
    [Google Scholar]
  32. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  33. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  34. Oren A, Duker S, Ritter S. The polar lipid composition of walsby's square bacterium. FEMS Microbiol Lett 1996; 138:135–140 [View Article]
    [Google Scholar]
  35. Kates M. Techniques of Lipidology New York: Elsevier; 1972 pp. 330–342
    [Google Scholar]
  36. Tamaoka J, Fujimura YK, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Microbiol 1983; 54:31–36[PubMed]
    [Google Scholar]
  37. Schleifer KH. Analysis of the chemical composition and primary structure of murein. Methods Microbiol 1985; 18:123–156
    [Google Scholar]
  38. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1970; 36:407–477
    [Google Scholar]
  39. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  40. Logan NA, Vos PD. Bacillaceae. In Whitman WB, Rainey F, Kämpfer P, Trujillo M, Chun J et al. (editors) Bergey's Manual of Systematics of Archaea and Bacteria Dordrecht, Heidelberg, London, New York: Bergey's Manual Trust and Springer; 2015
    [Google Scholar]
  41. Bhatt HB, Azmatunnisa Begum M, Chintalapati S, Chintalapati VR, Singh SP. Desertibacillus haloalkaliphilus gen. nov., sp. nov., isolated from a saline desert. Int J Syst Evol Microbiol 2017; 67:4435–4442 [View Article][PubMed]
    [Google Scholar]
  42. Addou NA, Schumann P, Spröer C, Ben Hania W, Hacene H et al. Melghiribacillus thermohalophilus gen. nov., sp. nov., a novel filamentous, endospore-forming, thermophilic and halophilic bacterium. Int J Syst Evol Microbiol 2015; 65:1172–1179 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002931
Loading
/content/journal/ijsem/10.1099/ijsem.0.002931
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error