1887

Abstract

A Gram-negative, strictly aerobic, non-motile and short rod- or coccus-shaped bacterium, designated strain LYH11, was isolated from a freshwater green alga Paulinella chromatophora. The strain grew at 5–37 °C (optimum, 30 °C) and pH 6–9 (pH 7) and in the presence of 0–1 % (w/v) NaCl (optimum, 0 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain LYH11 clearly belonged to the genus Kaistia of the family Rhizobiaceae . Strain LYH11 shared the highest 16S rRNA gene sequence similarity to Kaistia soli 5YN9-8 (98.3 %), Kaistia terrae 5YN3-3 (98.2 %), Kaistia geumhonensis B1-1 (97.8 %), Kaistia defluvii B6-12 (97.4 %) and Kaistia granuli Ko04 (97.2 %). The average nucleotide identity and in silico DNA–DNA hybridization values between strain LYH11 and K. soli 5YN9-8, the closest Kaistia type strain, were 77.3 and 21.1 %, respectively. Major cellular fatty acids of strain LYH11 were cyclo-C19 : 0 ω8c, summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), iso-C10 : 0, iso-C17 : 0 3-OH, iso-C17 : 1 ω5c and C18 : 0. Strain LYH11 contained phosphatidylglycerol, phosphatidylethanolamine, an unidentified phosphoaminolipid, an unidentified aminolipid, three unidentified phospholipids and five unidentified lipids as polar lipids. Ubiquinone-10 was the major respiratory quinone. The genomic DNA G+C content was 64.5 mol%. Based on the genotypic, chemotaxonomic and phenotypic analyses, strain LYH11 represents a novel species of the genus Kaistia , for which the name Kaistia algarum sp. nov. is proposed. The type strain is LYH11 (=KACC 19096=JCM 31803).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002943
2018-07-31
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/9/3028.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002943&mimeType=html&fmt=ahah

References

  1. Im WT, Yokota A, Kim MK, Lee ST. Kaistia adipata gen. nov., sp. nov., a novel alpha-proteobacterium. J Gen Appl Microbiol 2004; 50:249–254[PubMed]
    [Google Scholar]
  2. Jin L, Kim KK, Baek SH, Lee ST. Kaistia geumhonensis sp. nov. and Kaistia dalseonensis sp. nov., two members of the class Alphaproteobacteria. Int J Syst Evol Microbiol 2011; 61:2577–2581 [View Article][PubMed]
    [Google Scholar]
  3. Jin L, Kim KK, Lee HG, Ahn CY, Oh HM. Kaistia defluvii sp. nov., isolated from river sediment. Int J Syst Evol Microbiol 2012; 62:2878–2882 [View Article][PubMed]
    [Google Scholar]
  4. Weon HY, Lee CM, Hong SB, Kim BY, Yoo SH et al. Kaistia soli sp. nov., isolated from a wetland in Korea. Int J Syst Evol Microbiol 2008; 58:1522–1524 [View Article][PubMed]
    [Google Scholar]
  5. Kim SJ, Weon HY, Kim YS, Anandham R, Yoo SH et al. Kaistia terrae sp. nov., isolated from a wetland in Korea. Int J Syst Evol Microbiol 2010; 60:949–952 [View Article][PubMed]
    [Google Scholar]
  6. Lee HW, Yu HS, Liu QM, Jung HM, An DS et al. Kaistia granuli sp. nov., isolated from anaerobic granules in an upflow anaerobic sludge blanket reactor. Int J Syst Evol Microbiol 2007; 57:2280–2283 [View Article][PubMed]
    [Google Scholar]
  7. Glaeser SP, Galatis H, Martin K, Kämpfer P. Kaistia hirudinis sp. nov., isolated from the skin of Hirudo verbana. Int J Syst Evol Microbiol 2013; 63:3209–3213 [View Article][PubMed]
    [Google Scholar]
  8. Seymour JR, Amin SA, Raina JB, Stocker R. Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships. Nat Microbiol 2017; 2:17065 [View Article][PubMed]
    [Google Scholar]
  9. Lee Y, Jeon CO. Cohnella algarum sp. nov., isolated from a freshwater green alga Paulinella chromatophora. Int J Syst Evol Microbiol 2017; 67:4767–4772 [View Article][PubMed]
    [Google Scholar]
  10. Lee Y, Jeon CO. Sphingobium paulinellae sp. nov. and Sphingobium algicola sp. nov., isolated from a freshwater green alga Paulinella chromatophora. Int J Syst Evol Microbiol 2017; 67:5165–5171 [View Article][PubMed]
    [Google Scholar]
  11. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  12. Nawrocki EP, Eddy SR. Query-dependent banding (QDB) for faster RNA similarity searches. PLoS Comput Biol 2007; 3:e56 [View Article][PubMed]
    [Google Scholar]
  13. Felsenstein J. PHYLIP (Phylogeny Inference Package), Version 3.6a Seattle: Department of genetics, University of Washington, Seattle, WA, USA; 2002
    [Google Scholar]
  14. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30:1312–1313 [View Article][PubMed]
    [Google Scholar]
  15. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed]
    [Google Scholar]
  16. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  17. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kämpfer P et al. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 2002; 52:1043–1047 [View Article][PubMed]
    [Google Scholar]
  18. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  19. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1988; 19:1–67
    [Google Scholar]
  20. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P. (editor) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  21. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988; 19:161–208
    [Google Scholar]
  22. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  23. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977; 27:104–117 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002943
Loading
/content/journal/ijsem/10.1099/ijsem.0.002943
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error