1887

Abstract

A facultatively anaerobic, Gram-stain-positive, catalase-negative, rod-shaped lactic acid bacterium, designated SG816, was isolated from small intestine of a swine. Optimal growth occurred at 37 °C and pH 7.0. Furthermore, growth occurred in NaCl up to 0.5 % (w/v) but not at levels of salinity higher than 1 %. Comparative 16S rRNA gene sequencing and the matrix-associated laser desorption/ionization–time-of-flight mass spectometry profiling showed that strain SG816 was closely related to Lactobacillus delbrueckii subsp. bulgaricus KCTC 3635 (95.9 %) and Lactobacillus delbrueckii subsp. indicus JCM 15610 (95.9 %), followed by other Lactobacillus delbrueckii subspecies (95.9–95.7 %) and Lactobacillus equicursoris DSM 19284 (95.6 %). A comparison of two housekeeping genes, RNA polymerase alpha subunit (rpoA) and phenylalanyl-tRNA synthase alpha subunit (pheS), revealed that strain SG816 formed a separate branch within the clade of the genus Lactobacillus . The DNA G+C content level of the strain SG816 was 51.5 mol%. The strain was homofermentative and produced d-lactic acid from glucose fermentation. The major cellular fatty acids (>10 %) of the isolate were C18 : 1ω9c and C16 : 0. The peptidoglycan type was A4α l-Lys-d-Asp. On the basis of distinct phenotypic and phylogenetic properties, strain SG816 represents a novel species of the genus Lactobacillus , for which the name Lactobacillus porci sp. nov. is proposed. The type strain is SG816 (=KCTC 21090=NBRC 112917).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002949
2018-08-17
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/10/3118.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002949&mimeType=html&fmt=ahah

References

  1. Weiss N, Schillinger U, Kandler O. Lactobacillus lactis, Lactobacillus leichmannii and Lactobacillus bulgaricus, subjective synonyms of Lactobacillus delbrueckii, and description of Lactobacillus delbrueckii subsp. lactis comb. nov. and Lactobacillus delbrueckii subsp. bulgaricus comb. nov. Syst Appl Microbiol 1983; 4:552–557 [View Article][PubMed]
    [Google Scholar]
  2. Kandler O, Weiss N. Genus Lactobacillus Beijerinck 2009, 212AL. In Sneath PHA, Mair NS, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriology vol. 2 Baltimore: Williams & Wilkins; 2009 pp. 1209–1234
    [Google Scholar]
  3. Hammes WP, Hertel C. Genus I. Lactobacillus Beijerinck 2009, 212AL. In De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey’s Mannual of Systematic Bacteriology vol. 3 New York: Springer; 2009 pp. 465–511
    [Google Scholar]
  4. Olofsson TC, Alsterfjord M, Nilson B, Butler E, Vásquez A. Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov., isolated from the honey stomach of the honeybee Apis mellifera. Int J Syst Evol Microbiol 2014; 64:3109–3119 [View Article][PubMed]
    [Google Scholar]
  5. Techo S, Miyashita M, Shibata C, Tanaka N, Wisetkhan P et al. Lactobacillus ixorae sp. nov., isolated from a flower (West-Indian jasmine). Int J Syst Evol Microbiol 2016; 66:5500–5505 [View Article][PubMed]
    [Google Scholar]
  6. Sengupta R, Altermann E, Anderson RC, McNabb WC, Moughan PJ et al. The role of cell surface architecture of lactobacilli in host-microbe interactions in the gastrointestinal tract. Mediators Inflamm 2013; 2013:1–16 [View Article][PubMed]
    [Google Scholar]
  7. Gaggìa F, Mattarelli P, Biavati B. Probiotics and prebiotics in animal feeding for safe food production. Int J Food Microbiol 2010; 141:S15–S28 [View Article][PubMed]
    [Google Scholar]
  8. Kim HB, Isaacson RE. The pig gut microbial diversity: understanding the pig gut microbial ecology through the next generation high throughput sequencing. Vet Microbiol 2015; 177:242–251 [View Article][PubMed]
    [Google Scholar]
  9. Lähteinen T, Malinen E, Koort JM, Mertaniemi-Hannus U, Hankimo T et al. Probiotic properties of Lactobacillus isolates originating from porcine intestine and feces. Anaerobe 2010; 16:293–300 [View Article][PubMed]
    [Google Scholar]
  10. Frese SA, Benson AK, Tannock GW, Loach DM, Kim J et al. The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri. PLoS Genet 2011; 7:e1001314 [View Article][PubMed]
    [Google Scholar]
  11. Valeriano VD, Balolong MP, Kang DK. Probiotic roles of Lactobacillus sp. in swine: insights from gut microbiota. J Appl Microbiol 2017; 122:554–567 [View Article][PubMed]
    [Google Scholar]
  12. Delia E, Tafaj M, Männerin K. Efficiency of probiotis in farm animals. In Rigobelo E. (editor) Probiotic in Animals 2012 pp. 247–272
    [Google Scholar]
  13. Kenny M, Smidt H, Mengheri E, Miller B. Probiotics – do they have a role in the pig industry?. Animal 2011; 5:462–470 [View Article][PubMed]
    [Google Scholar]
  14. de Man JC, Rogosa M, Sharpe ME. A medium for the cultivation of lactobacilli. J Appl Bacteriol 1960; 23:130–135 [View Article]
    [Google Scholar]
  15. Adimpong DB, Nielsen DS, Sørensen KI, Vogensen FK, Sawadogo-Lingani H et al. Lactobacillus delbrueckii subsp. jakobsenii subsp. nov., isolated from dolo wort, an alcoholic fermented beverage in Burkina Faso. Int J Syst Evol Microbiol 2013; 63:3720–3726 [View Article][PubMed]
    [Google Scholar]
  16. Sorokin DY. Is there a limit for high-pH life?. Int J Syst Evol Microbiol 2005; 55:1405–1406 [View Article][PubMed]
    [Google Scholar]
  17. Oberg CJ, Oberg TS, Culumber MD, Ortakci F, Broadbent JR et al. Lactobacillus wasatchensis sp. nov., a non-starter lactic acid bacteria isolated from aged Cheddar cheese. Int J Syst Evol Microbiol 2016; 66:158–164 [View Article][PubMed]
    [Google Scholar]
  18. Chun J, Goodfellow M. A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 1995; 45:240–245 [View Article][PubMed]
    [Google Scholar]
  19. Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P et al. Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 2005; 151:2141–2150 [View Article][PubMed]
    [Google Scholar]
  20. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  21. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  22. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  23. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  24. Germond JE, Lapierre L, Delley M, Mollet B, Felis GE et al. Evolution of the bacterial species Lactobacillus delbrueckii: a partial genomic study with reflections on prokaryotic species concept. Mol Biol Evol 2003; 20:93–104 [View Article][PubMed]
    [Google Scholar]
  25. Mattarelli P, Holzapfel W, Franz CM, Endo A, Felis GE et al. Recommended minimal standards for description of new taxa of the genera Bifidobacterium, Lactobacillus and related genera. Int J Syst Evol Microbiol 2014; 64:1434–1451 [View Article][PubMed]
    [Google Scholar]
  26. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25:125–128 [View Article]
    [Google Scholar]
  27. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  28. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38:101–129
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002949
Loading
/content/journal/ijsem/10.1099/ijsem.0.002949
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error