1887

Abstract

A Gram-stain-negative, non-flagellated, motile-by-gliding, orange-coloured bacterial strain, designated strain IMCC20180, was isolated from seawater collected off the coast of the East Sea in the Republic of Korea. The 16S rRNA gene sequence analysis showed that strain IMCC20180 was most closely related to Winogradskyellaporiferorum UST030701-295 (95.7 % sequence similarity) and formed a robust phylogenetic clade with other Winogradskyella species, indicating that the strain was affiliated with the genus Winogradskyella . Growth of strain IMCC20180 was observed at 20–30 °C (optimum, 25 °C), pH 7.0–9.0 (pH 8.0) and with 1.0–3.5 % NaCl (3.0 %, w/v). The predominant isoprenoid quinone was MK-6. Major fatty acid constituents were iso-C15 : 1 G, summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c), iso-C15 : 0, iso-C17 : 0 3-OH and iso-C16 : 0 3-OH. The major polar lipids were phosphatidylethanolamine, four unknown aminolipids and five unknown lipids. The estimated genome size and the DNA G+C content of strain IMCC20180 were 3.1 Mb and 37.7 %, respectively. Based on 16S rRNA gene phylogeny, physiological and chemotaxonomic characterization, strain IMCC20180 represented a novel species in the genus Winogradskyella , for which the name Winogradskyella aurantiaca sp. nov. is proposed. The type strain is IMCC20180 (=KACC 18883=KCTC 52240=JCM 31383).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002977
2018-08-29
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/10/3260.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002977&mimeType=html&fmt=ahah

References

  1. Nedashkovskaya OI, Kim SB, Han SK, Snauwaert C, Vancanneyt M et al. Winogradskyella thalassocola gen. nov., sp. nov., Winogradskyella epiphytica sp. nov. and Winogradskyella eximia sp. nov., marine bacteria of the family Flavobacteriaceae. Int J Syst Evol Microbiol 2005; 55:49–55 [View Article][PubMed]
    [Google Scholar]
  2. Buchan A, Lecleir GR, Gulvik CA, González JM. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol 2014; 12:686–698 [View Article][PubMed]
    [Google Scholar]
  3. Park BS, Guo R, Lim W-A, Ki J-S. Pyrosequencing reveals specific associations of bacterial clades Roseobacter and Flavobacterium with the harmful dinoflagellate Cochlodinium polykrikoides growing in culture. Mar Ecol 2017; 38:e12474 [View Article]
    [Google Scholar]
  4. Yoon BJ, Byun HD, Kim JY, Lee DH, Kahng HY et al. Winogradskyella lutea sp. nov., isolated from seawater, and emended description of the genus Winogradskyella. Int J Syst Evol Microbiol 2011; 61:1539–1543 [View Article][PubMed]
    [Google Scholar]
  5. Lee SY, Park S, Oh TK, Yoon JH. Winogradskyella aquimaris sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2012; 62:1814–1818 [View Article][PubMed]
    [Google Scholar]
  6. Nedashkovskaya OI, Kukhlevskiy AD, Zhukova NV, Kim SJ, Rhee SK et al. Winogradskyella litoriviva sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol 2015; 65:3652–3657 [View Article][PubMed]
    [Google Scholar]
  7. Kang CH, Lee SY, Yoon JH. Winogradskyella litorisediminis sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 2013; 63:1793–1799 [View Article][PubMed]
    [Google Scholar]
  8. Kim SJ, Choi YR, Park SJ, Kim JG, Shin KS et al. Winogradskyella pulchriflava sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2013; 63:3062–3068 [View Article][PubMed]
    [Google Scholar]
  9. Begum Z, Srinivas TN, Manasa P, Sailaja B, Sunil B et al. Winogradskyella psychrotolerans sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from Arctic sediment. Int J Syst Evol Microbiol 2013; 63:1646–1652 [View Article][PubMed]
    [Google Scholar]
  10. Lau SC, Tsoi MM, Li X, Plakhotnikova I, Dobretsov S et al. Winogradskyella poriferorum sp. nov., a novel member of the family Flavobacteriaceae isolated from a sponge in the Bahamas. Int J Syst Evol Microbiol 2005; 55:1589–1592 [View Article][PubMed]
    [Google Scholar]
  11. Nedashkovskaya OI, Vancanneyt M, Kim SB, Zhukova NV. Winogradskyella echinorum sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from the sea urchin Strongylocentrotus intermedius. Int J Syst Evol Microbiol 2009; 59:1465–1468 [View Article][PubMed]
    [Google Scholar]
  12. Nedashkovskaya OI, Kukhlevskiy AD, Zhukova NV. Winogradskyella ulvae sp. nov., an epiphyte of a Pacific seaweed, and emended descriptions of the genus Winogradskyella and Winogradskyella thalassocola, Winogradskyella echinorum, Winogradskyella exilis and Winogradskyella eximia. Int J Syst Evol Microbiol 2012; 62:1450–1456 [View Article][PubMed]
    [Google Scholar]
  13. Sun Y, Chen BY, Du ZJ. Winogradskyella aurantia sp. nov., isolated from a marine solar saltern. Antonie van Leeuwenhoek 2017; 110:1445–1452 [View Article][PubMed]
    [Google Scholar]
  14. Ivanova EP, Christen R, Gorshkova NM, Zhukova NV, Kurilenko VV et al. Winogradskyella exilis sp. nov., isolated from the starfish Stellaster equestris, and emended description of the genus Winogradskyella. Int J Syst Evol Microbiol 2010; 60:1577–1580 [View Article][PubMed]
    [Google Scholar]
  15. Song J, Oh HM, Cho JC. Improved culturability of SAR11 strains in dilution-to-extinction culturing from the East Sea, West Pacific Ocean. FEMS Microbiol Lett 2009; 295:141–147 [View Article][PubMed]
    [Google Scholar]
  16. Yang SJ, Kang I, Cho JC. Expansion of cultured bacterial diversity by large-scale dilution-to-extinction culturing from a single seawater sample. Microb Ecol 2016; 71:29–43 [View Article][PubMed]
    [Google Scholar]
  17. Choi A, Yang SJ, Rhee KH, Cho JC. Lentisphaera marina sp. nov., and emended description of the genus Lentisphaera. Int J Syst Evol Microbiol 2013; 63:1540–1544 [View Article][PubMed]
    [Google Scholar]
  18. Choi A, Baek K, Lee H, Cho JC. Mesonia aquimarina sp. nov., a marine bacterium isolated from coastal seawater. Int J Syst Evol Microbiol 2015; 65:135–140 [View Article][PubMed]
    [Google Scholar]
  19. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  20. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  21. Ludwig W, Strunk O, Westram R, Richter L, Meier H et al. ARB: a software environment for sequence data. Nucleic Acids Res 2004; 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  22. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  24. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  25. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  26. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  27. Choo YJ, Lee K, Song J, Cho JC. Puniceicoccus vermicola gen. nov., sp. nov., a novel marine bacterium, and description of Puniceicoccaceae fam. nov., Puniceicoccales ord. nov., Opitutaceae fam. nov., Opitutales ord. nov. and Opitutae classis nov. in the phylum 'Verrucomicrobia'. Int J Syst Evol Microbiol 2007; 57:532–537 [View Article][PubMed]
    [Google Scholar]
  28. Fautz E, Reichenbach H. A simple test for flexirubin-type pigments. FEMS Microbiol Lett 1980; 8:87–91 [View Article]
    [Google Scholar]
  29. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark: DE: MIDI Inc; 1990
    [Google Scholar]
  30. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  31. Collins MD, Shah HN, Minnikin DE. A note on the separation of natural mixtures of bacterial menaquinones using reverse phase thin-layer chromatography. J Appl Bacteriol 1980; 48:277–282 [View Article][PubMed]
    [Google Scholar]
  32. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30:2114–2120 [View Article][PubMed]
    [Google Scholar]
  33. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002977
Loading
/content/journal/ijsem/10.1099/ijsem.0.002977
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error