1887

Abstract

The novel strain IHBB 11108 was a psychrotolerant and alkaliphilic bacterium isolated from the subsurface water of Chandra Tal Lake in the Lahaul-Spiti valley located in the Indian trans-Himalayas. Cells were Gram-stain-positive, aerobic, non-motile, catalase-positive and oxidase-negative. The strain grew at 5–37 °C (optimum 28 °C), pH 5.0–12.0 (optimum pH 7.0) and with up to 8 % NaCl (optimum 1 %). The 16S rRNA gene sequence analysis revealed the highest relatedness of strain IHBB 11108 with Psychromicrobium silvestre DSM 102047 (97.5 %), Arthrobacter russicus DSM 14555 (97.4 %) and Renibacterium salmoninarum ATCC 33209 (97.4 %). The strain contained a quinone system with 57.2 % MK-9(H2), 39.1 % MK-10(H2), 3.0 % MK-8(H2) and 0.7 % MK-7(H2). The polar lipids detected were diphosphatidylglycerol, dimannosylglyceride, phosphatidylinositol, phosphatidylglycerol, monogalactosyldiacylglycerol, one unidentified glycolipid and four unidentified lipids. The cell-wall peptidoglycan structure type was A3α l-Lys–l-Thr–l-Ala with substitution of the α-carboxyl group of d-Glu by alanine amide. Anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0 were the predominant fatty acids. The genomic DNA G+C content was 59.0 mol%. The DNA–DNA relatedness of strain IHBB 11108 was 46.7±2.2, 43.1±2.5 and 19.1±2.4 % with P. silvestre DSM 102047, A. russicus DSM 14555 and R. salmoninarum ATCC 33209, respectively. On the basis of the results of the phenotypic, chemotaxonomic and phylogenetic analyses, IHBB 11108 is considered to represent a novel species of the genus Psychromicrobium for which the name Psychromicrobium lacuslunae sp. nov. is proposed. The type strain is IHBB 11108 (=MTCC 12460=MCC 2780=JCM 31143=KACC 19070).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.002997
2018-09-11
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/11/3416.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.002997&mimeType=html&fmt=ahah

References

  1. Schumann P, Zhang DC, França L, Albuquerque L, da Costa MS et al. Psychromicrobium silvestre gen. nov., sp. nov., an actinobacterium isolated from alpine forest soils. Int J Syst Evol Microbiol 2017; 67:640–645 [View Article][PubMed]
    [Google Scholar]
  2. Busse HJ. Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus. Int J Syst Evol Microbiol 2016; 66:9–37 [View Article][PubMed]
    [Google Scholar]
  3. Gulati A, Rahi P, Vyas P. Characterization of phosphate-solubilizing fluorescent pseudomonads from the rhizosphere of seabuckthorn growing in the cold deserts of Himalayas. Curr Microbiol 2008; 56:73–79 [View Article][PubMed]
    [Google Scholar]
  4. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  5. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  6. Schumann P, Maier T. MALDI-TOF mass spectrometry applied to classification and identification of bacteria. Methods Microbiol 2014; 41:275–306
    [Google Scholar]
  7. Skerman VBD. A Guide to the Identification of the Genera of Bacteria, 2nd ed. Baltimore, MD: Williams & Wilkins; 1967
    [Google Scholar]
  8. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhard P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  9. Cowan ST, Steel KJ. Manual for the identification of Medical Bacteria London: Cambridge University Press; 1965
    [Google Scholar]
  10. Barritt MM. The intensification of the Voges–Proskauer reaction by the addition of α-naphthol. J Pathol Bacteriol 1936; 42:441–454 [View Article]
    [Google Scholar]
  11. Singh O, Gupta M, Mittal V, Kiran S, Nayyar H et al. Novel phosphate solubilizing bacteria ‘Pantoea cypripedii PS1’ along with Enterobacter aerogenes PS16 and Rhizobium ciceri enhance the growth of chickpea (Cicer arietinum L.). Plant Growth Regul 2014; 73:79–89 [View Article]
    [Google Scholar]
  12. Altenburgera P, Kämpferb P, Makristathisc A, Lubitza W, Bussea H-J. Classification of bacteria isolated from a medieval wall painting. J Biotechnol 1996; 47:39–52 [View Article]
    [Google Scholar]
  13. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1991; 13:128–130 [View Article]
    [Google Scholar]
  14. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1991; 66:199–202 [View Article]
    [Google Scholar]
  15. Stolz A, Busse HJ, Kämpfer P. Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 2007; 57:572–576 [View Article][PubMed]
    [Google Scholar]
  16. Schumann P. Peptidoglycan structure. Methods Microbiol 2011; 38:101–129
    [Google Scholar]
  17. Fiedler F, Schleifer K, Kandler O. Amino acid sequence of the threonine-containing mureins of coryneform bacteria. J Bacteriol 1973; 113:8–17[PubMed]
    [Google Scholar]
  18. Li Y, Kawamura Y, Fujiwara N, Naka T, Liu H et al. Rothia aeria sp. nov., Rhodococcus baikonurensis sp. nov. and Arthrobacter russicus sp. nov., isolated from air in the Russian space laboratory Mir. Int J Syst Evol Microbiol 2004; 54:827–835 [View Article][PubMed]
    [Google Scholar]
  19. Kusser W, Fiedler F. Murein type and polysaccharide composition of cell walls from Renibacterium salmoninarum. FEMS Microbiol Lett 1983; 20:391–394 [View Article]
    [Google Scholar]
  20. Ganzert L, Bajerski F, Mangelsdorf K, Lipski A, Wagner D. Arthrobacter livingstonensis sp. nov. and Arthrobacter cryotolerans sp. nov., salt-tolerant and psychrotolerant species from Antarctic soil. Int J Syst Evol Microbiol 2011; 61:979–984 [View Article][PubMed]
    [Google Scholar]
  21. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  22. Kiran S, Swarnkar MK, Pal M, Thakur R, Tewari R et al. Complete genome sequencing of protease-producing novel Arthrobacter sp. strain IHBB 11108 using pacbio single-molecule real-time sequencing technology. Genome Announc 2015; 3:e00346 [View Article][PubMed]
    [Google Scholar]
  23. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  24. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142 [View Article][PubMed]
    [Google Scholar]
  25. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4:184–192 [View Article][PubMed]
    [Google Scholar]
  26. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.002997
Loading
/content/journal/ijsem/10.1099/ijsem.0.002997
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error