1887

Abstract

A Gram-stain-positive, motile, rod-shaped, obligately anaerobic bacterium, designated FRIFI, was isolated from human ileostoma effluent and characterized. On the basis of 16S rRNA gene sequence similarity, strain FRIFI was most closely related to the species Romboutsia ilealis CRIB (97.7 %), Romboutsia lituseburensis DSM 797 (97.6 %) and Romboutsia sedimentorum LAM201 (96.6 %). The level of DNA–DNA relatedness between strain FRIFI and R. ilealis CRIB was 13.9±3.3 % based on DNA–DNA hybridization. Whole genome sequence-based average nucleotide identity between strain FRIFI and closely related Romboutsia strains ranged from 78.4–79.1 %. The genomic DNA G+C content of strain FRIFI was 27.8 mol%. The major cellular fatty acids of strain FRIFI were saturated and unsaturated straight-chain C12–C19 fatty acids as well as cyclopropane fatty acids, with C16 : 0 being the predominant fatty acid. The polar lipid profile comprised five phospholipids and six glycolipids. These results, together with differences in phenotypic features, support the proposal that strain FRIFI represents a novel species within the genus Romboutsia , for which the name Romboutsia hominis sp. nov. is proposed. The type strain is FRIFI (=DSM 28814=KCTC 15553).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003012
2018-09-18
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/11/3479.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003012&mimeType=html&fmt=ahah

References

  1. Gerritsen J, Fuentes S, Grievink W, van Niftrik L, Tindall BJ et al. Characterization of Romboutsia ilealis gen. nov., sp. nov., isolated from the gastro-intestinal tract of a rat, and proposal for the reclassification of five closely related members of the genus Clostridium into the genera Romboutsia gen. nov., Intestinibacter gen. nov., Terrisporobacter gen. nov. and Asaccharospora gen. nov. Int J Syst Evol Microbiol 2014; 64:1600–1616 [View Article][PubMed]
    [Google Scholar]
  2. Wang Y, Song J, Zhai Y, Zhang C, Gerritsen J et al. Romboutsia sedimentorum sp. nov., isolated from an alkaline-saline lake sediment and emended description of the genus Romboutsia. Int J Syst Evol Microbiol 2015; 65:1193–1198 [View Article][PubMed]
    [Google Scholar]
  3. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR et al. Evolution of mammals and their gut microbes. Science 2008; 320:1647–1651 [View Article][PubMed]
    [Google Scholar]
  4. Li E, Hamm CM, Gulati AS, Sartor RB, Chen H et al. Inflammatory bowel diseases phenotype, C. difficile and NOD2 genotype are associated with shifts in human ileum associated microbial composition. PLoS One 2012; 7:e26284 [View Article][PubMed]
    [Google Scholar]
  5. Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 2013; 499:97–101 [View Article][PubMed]
    [Google Scholar]
  6. Xu D, Gao J, Gillilland M, Wu X, Song I et al. Rifaximin alters intestinal bacteria and prevents stress-induced gut inflammation and visceral hyperalgesia in rats. Gastroenterology 2014; 146:484–496 [View Article][PubMed]
    [Google Scholar]
  7. Kämpfer P, Buczolits S, Albrecht A, Busse HJ, Stackebrandt E. Towards a standardized format for the description of a novel species (of an established genus): Ochrobactrum gallinifaecis sp. nov. Int J Syst Evol Microbiol 2003; 53:893–896 [View Article][PubMed]
    [Google Scholar]
  8. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article][PubMed]
    [Google Scholar]
  9. Gerritsen J, Timmerman HM, Fuentes S, van Minnen LP, Panneman H et al. Correlation between protection against sepsis by probiotic therapy and stimulation of a novel bacterial phylotype. Appl Environ Microbiol 2011; 77:7749–7756 [View Article][PubMed]
    [Google Scholar]
  10. Holdeman LV, Cato EP, Moore WEC. Anaerobe Laboratory Manual, 4th ed. Blacksburg, VA: Virginia Polytechnic Institute and State University; 1977
    [Google Scholar]
  11. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  12. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  13. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  14. Maheux AF, Boudreau DK, Bérubé È, Boissinot M, Raymond F et al. Draft Genome Sequence of Romboutsia maritimum sp. nov. Strain CCRI-22766T, Isolated from Coastal Estuarine Mud. Genome Announc 2017; 5:e01044-17 [View Article][PubMed]
    [Google Scholar]
  15. Ricaboni D, Mailhe M, Khelaifia S, Raoult D, Million M. Romboutsia timonensis, a new species isolated from human gut. New Microbes New Infect 2016; 12:6–7 [View Article][PubMed]
    [Google Scholar]
  16. Maheux AF, Boudreau DK, Bérubé È, Boissinot M, Cantin P et al. Draft genome sequence of Romboutsia weinsteinii sp. nov. strain CCRI-19649T isolated from surface water. Genome Announc 2017; 5:e00901-17 [View Article][PubMed]
    [Google Scholar]
  17. Cashion P, Holder-Franklin MA, McCully J, Franklin M. A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 1977; 81:461–466 [View Article][PubMed]
    [Google Scholar]
  18. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142 [View Article][PubMed]
    [Google Scholar]
  19. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4:184–192 [View Article][PubMed]
    [Google Scholar]
  20. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464
    [Google Scholar]
  21. Galperin MY, Brover V, Tolstoy I, Yutin N. Phylogenomic analysis of the family Peptostreptococcaceae (Clostridium cluster XI) and proposal for reclassification of Clostridium litorale (Fendrich et al. 1991) and Eubacterium acidaminophilum (Zindel et al. 1989) as Peptoclostridium litorale gen. nov. comb. nov. and Peptoclostridium acidaminophilum comb. nov. Int J Syst Evol Microbiol 2016; 66:5506–5513 [View Article][PubMed]
    [Google Scholar]
  22. Gerritsen J, Hornung B, Renckens B, van Hijum S, Martins dos Santos VAP et al. Genomic and functional analysis of Romboutsia ilealis CRIBT reveals adaptation to the small intestine. PeerJ 2017; 5:e3698 [View Article][PubMed]
    [Google Scholar]
  23. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  24. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  25. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  26. Duncan CL, Strong DH. Improved medium for sporulation of Clostridium perfringens. Appl Microbiol 1968; 16:82–89[PubMed]
    [Google Scholar]
  27. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  28. Leifson E. Atlas of Bacterial Flagellation New York: Academic Press Inc; 1960
    [Google Scholar]
  29. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982; 16:584–586[PubMed]
    [Google Scholar]
  30. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  31. Adachi K, Katsuta A, Matsuda S, Peng X, Misawa N et al. Smaragdicoccus niigatensis gen. nov., sp. nov., a novel member of the suborder Corynebacterineae. Int J Syst Evol Microbiol 2007; 57:297–301 [View Article][PubMed]
    [Google Scholar]
  32. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  33. Guan Z, Chen L, Gerritsen J, Smidt H, Goldfine H. The cellular lipids of Romboutsia. Biochim Biophys Acta 2016; 1861:1076–1082 [View Article][PubMed]
    [Google Scholar]
  34. Rainey FA, Hollen BJ, Small A. Genus 1. Clostridium. In de Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey's Manual of Systematic Bacteriology New York: Springer; 2009 pp. 738–828
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003012
Loading
/content/journal/ijsem/10.1099/ijsem.0.003012
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error