1887

Abstract

A novel Gram-stain-positive, strictly aerobic strain, NEAU-SA1, which showed a rod–coccus growth life cycle, was isolated from forest soil from Zhangjiajie, Hunan Province, China. The isolate grew at 10–40 °C (optimum 28 °C), at pH 5.0–10.0 (optimum pH 7.0) and in the presence of up to 5 % (w/v) NaCl, although NaCl was not required for growth. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NEAU-SA1 belonged to the genus Arthrobacter and was closely related to Arthrobacter cupressi DSM 24664 (98.1 % similarity). Average nucleotide identity values between NEAU-SA1 and A. cupressi DSM 24664 were 88.91 and 87.41 % by ANIm and ANIb analysis, respectively. The in silico DNA–DNA hybridization value between strain NEAU-SA1 and A. cupressi DSM 24664 was 34.20 %, again indicating they belong to different taxa. The genomic DNA G+C content was 66.74 mol%. The major cellular fatty acids (>10 %) were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and two unidentified glycolipids. The predominant menaquinone was MK-9(H2). The peptidoglycan type was A3α with an interpeptide bridge comprising l-Lys and l-Ala. Glucose, ribose and galactose were the whole-cell sugars. On the basis of morphological, physiological, biochemical and chemotaxonomic analysis, strain NEAU-SA1 was classified as representing a novel species in the genus Arthrobacter , for which the name Arthrobacter silvisoli sp. nov. is proposed. The type strain is NEAU-SA1 (=DSM 106716=CCTCC AB 2017271).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003085
2018-10-23
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/68/12/3892.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003085&mimeType=html&fmt=ahah

References

  1. Conn HJ, Dimmick I. Soil bacteria similar in morphology to Mycobacterium and Corynebacterium. J Bacteriol 1947; 54:291–303[PubMed]
    [Google Scholar]
  2. Koch C, Schumann P, Stackebrandt E. Reclassification of Micrococcus agilis (Ali-Cohen 1889) to the genus Arthrobacter as Arthrobacter agilis comb. nov. and emendation of the genus Arthrobacter. Int J Syst Bacteriol 1995; 45:837–839 [View Article][PubMed]
    [Google Scholar]
  3. Liu Q, Xin YH, Chen XL, Liu HC, Zhou YG et al. Arthrobacter ruber sp. nov., isolated from glacier ice. Int J Syst Evol Microbiol 2018; 68:1616–1621 [View Article][PubMed]
    [Google Scholar]
  4. Busse HJ. Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus. Int J Syst Evol Microbiol 2016; 66:9–37 [View Article][PubMed]
    [Google Scholar]
  5. Busse HJ, Moore ERB. Reclassification of Arthrobacter nasiphocae (Collins et al. 2002) as Falsarthrobacter nasiphocae gen. nov., comb. nov. Int J Syst Evol Microbiol 2018; 68:1361–1364 [View Article][PubMed]
    [Google Scholar]
  6. Schumann P, Busse HJ. Reclassification of Arthrobacter sanguinis (Mages et al. 2009) as Haematomicrobium sanguinis gen. nov., comb. nov. Int J Syst Evol Microbiol 2017; 67:1052–1057 [View Article][PubMed]
    [Google Scholar]
  7. Flores-Félix JD, Ramírez-Bahena MH, Salazar S, Peix A, Velázquez E. Reclassification of Arthrobacter viscosus as Rhizobium viscosum comb. nov. Int J Syst Evol Microbiol 2017; 67:1789–1792 [View Article][PubMed]
    [Google Scholar]
  8. Li J, Zhao GZ, Huang HY, Qin S, Zhu WY et al. Isolation and characterization of culturable endophytic actinobacteria associated with Artemisia annua L. Antonie van Leeuwenhoek 2012; 101:515–527 [View Article][PubMed]
    [Google Scholar]
  9. Murray RGE, Doetsch RN, Robinow CF. Determinative and cytological light microscopy. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington: American Society for Microbiology; 1994 pp. 21–41
    [Google Scholar]
  10. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  11. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A. Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 1982; 128:1959–1968
    [Google Scholar]
  12. Pan T, He H, Li C, Zhao J, Zhang Y et al. Streptomyces daqingensis sp. nov., isolated from saline-alkaline soil. Int J Syst Evol Microbiol 2016; 66:1358–1363 [View Article][PubMed]
    [Google Scholar]
  13. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: a Aboratory Manual, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1989
    [Google Scholar]
  14. Woese CR, Gutell R, Gupta R, Noller HF. Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol Rev 1983; 47:621–669[PubMed]
    [Google Scholar]
  15. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  17. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  18. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  19. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  20. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  21. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008; 24:713–714 [View Article][PubMed]
    [Google Scholar]
  22. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  23. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article][PubMed]
    [Google Scholar]
  24. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  25. Xiang W, Liu C, Wang X, Du J, Xi L et al. Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 2011; 61:1165–1169 [View Article][PubMed]
    [Google Scholar]
  26. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  27. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985 pp. 267–284
    [Google Scholar]
  28. Wu C, Lu X, Qin M, Wang Y, Ruan J. Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 1989; 16:176–178
    [Google Scholar]
  29. Guo L, Tuo L, Habden X, Zhang Y, Liu J et al. Allosalinactinospora lopnorensis gen. nov., sp. nov., a new member of the family Nocardiopsaceae isolated from soil. Int J Syst Evol Microbiol 2015; 65:206–213 [View Article][PubMed]
    [Google Scholar]
  30. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477[PubMed]
    [Google Scholar]
  31. Tang SK, Wang Y, Chen Y, Lou K, Cao LL et al. Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. Int J Syst Evol Microbiol 2009; 59:2025–2032 [View Article][PubMed]
    [Google Scholar]
  32. Zhang J, Ma Y, Yu H. Arthrobacter cupressi sp. nov., an actinomycete isolated from the rhizosphere soil of Cupressus sempervirens. Int J Syst Evol Microbiol 2012; 62:2731–2736 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003085
Loading
/content/journal/ijsem/10.1099/ijsem.0.003085
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error