1887

Abstract

A yellow-pigmented, Gram-stain-negative, gliding and rod-shaped bacterial strain, designated zong2l5, was isolated from a forest soil sample at Dinghu Mountain, Guangdong Province, PR China. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain zong2l5 belongs to the genus Lysobacter , and was most closely related to Lysobacter enzymogenes KCTC 12131 (97.7 %) and Lysobacter soli KCTC 22011 (97.6 %). The novel strain showed an average nucleotide identity (ANI) value of 81.5 % and a digital DNA–DNA hybridization (dDDH) value of 25.3 % with L. enzymogenes KCTC 12131 based on draft genome sequences, followed by L. soli KCTC 22011 with ANI and dDDH values of 79.4 % and 22.7 %, respectively. The DNA G+C content of strain zong2l5 based on the whole genome sequence was 69.2 mol%. The major fatty acids were iso-C15 : 0, iso-C17 : 0 and summed feature 9 (iso-C17 : 1ω9c and/or 10-methyl C16 : 0). Strain zong2l5 contained Q-8 as the major isoprenoid quinone and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidyl-N-methylethanolamine, phosphatidylethanolamine, three unidentified phospholipids and an unidentified aminolipid. The phenotypic, genotypic and chemotaxonomic anlyses clearly showed that strain zong2l5 represents a novel species of the genus Lysobacter , for which the name Lysobacter silvisoli sp. nov. is proposed. The type strain is zong2l5 (=GDMCC 1.1489=KCTC 52923).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003105
2018-11-13
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/1/93.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003105&mimeType=html&fmt=ahah

References

  1. Christensen P, Cook FD. Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int J Syst Bacteriol 1978; 28:367–393 [View Article]
    [Google Scholar]
  2. Lee D, Jang JH, Cha S, Seo T. Lysobacter humi sp. nov., isolated from soil. Int J Syst Evol Microbiol 2017; 67:951–955 [View Article]
    [Google Scholar]
  3. Siddiqi MZ, Im WT. Lysobacter pocheonensis sp. nov., isolated from soil of a ginseng field. Arch Microbiol 2016; 198:551–557 [View Article][PubMed]
    [Google Scholar]
  4. de Bruijn I, Cheng X, de Jager V, Expósito RG, Watrous J et al. Comparative genomics and metabolic profiling of the genus Lysobacter. BMC Genomics 2015; 16:991 [View Article][PubMed]
    [Google Scholar]
  5. Hernández I, Fernàndez C. Draft genome sequence and assembly of a Lysobacter enzymogenes strain with biological control activity against root knot nematodes. Genome Announc 2017; 5:e0027117 [View Article][PubMed]
    [Google Scholar]
  6. Xie Y, Wright S, Shen Y, du L. Bioactive natural products from Lysobacter. Nat Prod Rep 2012; 29:1277–1287 [View Article][PubMed]
    [Google Scholar]
  7. Panthee S, Hamamoto H, Paudel A, Sekimizu K. Lysobacter species: a potential source of novel antibiotics. Arch Microbiol 2016; 198:839–845 [View Article][PubMed]
    [Google Scholar]
  8. Akter S, Huq MA, Yi TH. Lysobacter humi sp. nov., a bacterium isolated from rice field. Arch Microbiol 2016; 198:1005–1012 [View Article][PubMed]
    [Google Scholar]
  9. Jung HM, Ten LN, Im WT, Yoo SA, Lee ST. Lysobacter ginsengisoli sp. nov., a novel species isolated from soil in Pocheon Province, South Korea. J Microbiol Biotechnol 2008; 18:1496–1499[PubMed]
    [Google Scholar]
  10. Weon HY, Kim BY, Baek YK, Yoo SH, Kwon SW et al. Two novel species, Lysobacter daejeonensis sp. nov. and Lysobacter yangpyeongensis sp. nov., isolated from Korean greenhouse soils. Int J Syst Evol Microbiol 2006; 56:947–951 [View Article][PubMed]
    [Google Scholar]
  11. Kim SJ, Ahn JH, Weon HY, Hong SB, Seok SJ et al. Lysobacter terricola sp. nov., isolated from greenhouse soil. Int J Syst Evol Microbiol 2016; 66:1401–1406 [View Article][PubMed]
    [Google Scholar]
  12. Luo G, Shi Z, Wang G. Lysobacter arseniciresistens sp. nov., an arsenite-resistant bacterium isolated from iron-mined soil. Int J Syst Evol Microbiol 2012; 62:1659–1665 [View Article][PubMed]
    [Google Scholar]
  13. Li J, Han Y, Guo W, Wang Q, Liao S et al. Lysobacter tongrenensis sp. nov., isolated from soil of a manganese factory. Arch Microbiol 2018; 200:439–444 [View Article][PubMed]
    [Google Scholar]
  14. Fukuda W, Kimura T, Araki S, Miyoshi Y, Atomi H et al. Lysobacter oligotrophicus sp. nov., isolated from an Antarctic freshwater lake in Antarctica. Int J Syst Evol Microbiol 2013; 63:3313–3318 [View Article][PubMed]
    [Google Scholar]
  15. Siddiqi MZ, Im WT. Lysobacter hankyongensis sp. nov., isolated from activated sludge and Lysobacter sediminicola sp. nov., isolated from freshwater sediment. Int J Syst Evol Microbiol 2016; 66:212–218 [View Article][PubMed]
    [Google Scholar]
  16. Park JH, Kim R, Aslam Z, Jeon CO, Chung YR. Lysobacter capsici sp. nov., with antimicrobial activity, isolated from the rhizosphere of pepper, and emended description of the genus Lysobacter. Int J Syst Evol Microbiol 2008; 58:387–392 [View Article][PubMed]
    [Google Scholar]
  17. Singh H, du J, Ngo HT, Won K, Yang JE et al. Erratum to: Lysobacter fragariae sp. nov. and Lysobacter rhizosphaerae sp. nov. isolated from rhizosphere of strawberry plant. Antonie van Leeuwenhoek 2015; 107:1639–1641 [View Article][PubMed]
    [Google Scholar]
  18. Yan ZF, Trinh H, Moya G, Lin P, Li CT et al. Lysobacter rhizophilus sp. nov., isolated from rhizosphere soil of mugunghwa, the national flower of South Korea. Int J Syst Evol Microbiol 2016; 66:4754–4759 [View Article][PubMed]
    [Google Scholar]
  19. Yang SZ, Feng GD, Zhu HH, Wang YH. Lysobacter mobilis sp. nov., isolated from abandoned lead-zinc ore. Int J Syst Evol Microbiol 2015; 65:833–837 [View Article][PubMed]
    [Google Scholar]
  20. Jeong SE, Lee HJ, Jeon CO. Lysobacter aestuarii sp. nov., isolated from estuary sediment. Int J Syst Evol Microbiol 2016; 66:1346–1351 [View Article][PubMed]
    [Google Scholar]
  21. Zhang XF, Wang HH, Sun XY, Pan CM. Lysobacter zhanggongensis sp. nov. Isolated from a Pit Mud. Curr Microbiol 2017; 74:1389–1393 [View Article][PubMed]
    [Google Scholar]
  22. Chen W, Zhao YL, Cheng J, Zhou XK, Salam N et al. Lysobacter cavernae sp. nov., a novel bacterium isolated from a cave sample. Antonie van Leeuwenhoek 2016; 109:1047–1053 [View Article][PubMed]
    [Google Scholar]
  23. Yan ZC, Wang B, Li YZ, Gong X, Zhang HQ et al. Morphologies and phylogenetic classification of cellulolytic myxobacteria. Syst Appl Microbiol 2003; 26:104–109 [View Article][PubMed]
    [Google Scholar]
  24. Kieser T, Bibb MJ, Butttner MJ, Chater KF, Hopwood DA et al. Practical Streptomyces genetics Norwich, England: John Inner Foundation; 2000
    [Google Scholar]
  25. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  26. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  27. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  28. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  29. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  30. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  31. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  32. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  33. Stackebrandt E. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 33:152–155
    [Google Scholar]
  34. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  35. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 2005; 102:2567–2572 [View Article][PubMed]
    [Google Scholar]
  36. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  37. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  38. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  39. Busse HJ, Hauser E, Kämpfer P. Description of two novel species, Sphingomonas abaci sp. nov. and Sphingomonas panni sp. nov. Int J Syst Evol Microbiol 2005; 55:2565–2569 [View Article][PubMed]
    [Google Scholar]
  40. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049 [View Article][PubMed]
    [Google Scholar]
  41. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  42. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  43. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42:457–469 [View Article]
    [Google Scholar]
  44. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: ASM Press; 2007 pp. 330–393
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003105
Loading
/content/journal/ijsem/10.1099/ijsem.0.003105
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error