1887

Abstract

Two marine actinomycete strains, LHW50302 and LHW51701, were isolated from marine sponges collected in Sansha, Hainan Province, China. The morphological, chemotaxonomic and phylogenetic characteristics were consistent with their classification in the genus Streptomyces . The strains formed hooked and looped chains of arthrospores with smooth surfaces. The cell-wall hydrolysates of the strains contained ll-diaminopimelic acid as the diagnostic diamino acid. MK-9(H8) was the predominant menaquinone. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. Major fatty acids of the strains were iso-C16 : 0, anteiso-C15 : 0 and anteiso-C17 : 0. The 16S rRNA gene sequences indicated that the strains clustered together with Streptomyces albus CGMCC 4.1640 and Streptomyces qinglanensis CGMCC 4.6825. Multilocus sequence analysis (MLSA) confirmed their relationship. Genome relatedness in forms of average nucleotide identity, digital DNA–DNA hybridization value and MLSA evolutionary distance between each of the strains and its closest relatives showed that they belonged to distinct species. On the basis of these results, strains LHW50302 and LHW51701 belong to two novel species in the genus Streptomyces , for which the names Streptomyces reniochalinae sp. nov. (type strain LHW50302=CCTCC AA 2018013=DSM 106194) and Streptomyces diacarni sp. nov. (type strain LHW51701=CCTCC AA 2018017=DSM 106126) are proposed, respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003109
2018-11-14
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/1/99.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003109&mimeType=html&fmt=ahah

References

  1. Waksman SA, Henrici AT. The nomenclature and classification of the actinomycetes. J Bacteriol 1943; 46:337–341[PubMed]
    [Google Scholar]
  2. Katz L, Baltz RH. Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol 2016; 43:155–176 [View Article][PubMed]
    [Google Scholar]
  3. Abdelmohsen UR, Bayer K, Hentschel U. Diversity, abundance and natural products of marine sponge-associated actinomycetes. Nat Prod Rep 2014; 31:381–399 [View Article][PubMed]
    [Google Scholar]
  4. Silva FS, Souza DT, Zucchi TD, Pansa CC, de Figueiredo Vasconcellos RL et al. Streptomyces atlanticus sp. nov., a novel actinomycete isolated from marine sponge Aplysina fulva (Pallas, 1766). Antonie van Leeuwenhoek 2016; 109:1467–1474 [View Article][PubMed]
    [Google Scholar]
  5. Pimentel-Elardo SM, Scheuermayer M, Kozytska S, Hentschel U. Streptomyces axinellae sp. nov., isolated from the Mediterranean sponge Axinella polypoides (Porifera). Int J Syst Evol Microbiol 2009; 59:1433–1437 [View Article][PubMed]
    [Google Scholar]
  6. Khan ST, Tamura T, Takagi M, Shin-Ya K. Streptomyces tateyamensis sp. nov., Streptomyces marinus sp. nov. and Streptomyces haliclonae sp. nov., isolated from the marine sponge Haliclona sp. Int J Syst Evol Microbiol 2010; 60:2775–2779 [View Article][PubMed]
    [Google Scholar]
  7. Huang X, Zhou S, Huang D, Chen J, Zhu W. Streptomyces spongiicola sp. nov., an actinomycete derived from marine sponge. Int J Syst Evol Microbiol 2016; 66:738–743 [View Article][PubMed]
    [Google Scholar]
  8. Kim BY, Stach JE, Weon HY, Kwon SW, Goodfellow M. Dactylosporangium luridum sp. nov., Dactylosporangium luteum sp. nov. and Dactylosporangium salmoneum sp. nov., nom. rev., isolated from soil. Int J Syst Evol Microbiol 2010; 60:1813–1823 [View Article][PubMed]
    [Google Scholar]
  9. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340
    [Google Scholar]
  10. Waksman SA. The Actinomycetes. A Summary of Current Knowledge New York: Ronald Press; 1967
    [Google Scholar]
  11. Castiglione F, Lazzarini A, Carrano L, Corti E, Ciciliato I et al. Determining the structure and mode of action of microbisporicin, a potent lantibiotic active against multiresistant pathogens. Chem Biol 2008; 15:22–31 [View Article][PubMed]
    [Google Scholar]
  12. Jones KL. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 1949; 57:141–146[PubMed]
    [Google Scholar]
  13. Kelly KL. Inter-Society Color Council–national Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  14. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
  15. Arai T. Culture Media for Actinomycetes Tokyo: The Society for Actinomycetes Japan; 1975
    [Google Scholar]
  16. Williams ST, Cross T. Actinomycetes. In Booth C. (editor) Methods in Microbiology vol. 4 London: Academic Press; 1971 pp. 295–334
    [Google Scholar]
  17. Teather RM, Wood PJ. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 1982; 43:777–780[PubMed]
    [Google Scholar]
  18. Guo L, Tuo L, Habden X, Zhang Y, Liu J et al. Allosalinactinospora lopnorensis gen. nov., sp. nov., a new member of the family Nocardiopsaceae isolated from soil. Int J Syst Evol Microbiol 2015; 65:206–213 [View Article][PubMed]
    [Google Scholar]
  19. Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH et al. Numerical classification of Streptomyces and related genera. J Gen Microbiol 1983; 129:1743–1813 [View Article][PubMed]
    [Google Scholar]
  20. Kämpfer P, Steiof M, Dott W. Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 1991; 21:227–251 [View Article][PubMed]
    [Google Scholar]
  21. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. In Dietz A, Thayer DW. (editors) Actinomycete Taxonomy, Special Publication Arlington, VA: Society of Industrial Microbiology; 1980 pp. 227–291
    [Google Scholar]
  22. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241
    [Google Scholar]
  23. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  24. Pospiech A, Neumann B. A versatile quick-prep of genomic DNA from gram-positive bacteria. Trends Genet 1995; 11:217–218 [View Article][PubMed]
    [Google Scholar]
  25. Nakajima Y, Kitpreechavanich V, Suzuki K, Kudo T. Microbispora corallina sp. nov., a new species of the genus Microbispora isolated from Thai soil. Int J Syst Bacteriol 1999; 49:1761–1767 [View Article][PubMed]
    [Google Scholar]
  26. Coil D, Jospin G, Darling AE. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 2015; 31:587–589 [View Article][PubMed]
    [Google Scholar]
  27. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  28. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882[PubMed]
    [Google Scholar]
  29. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  30. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120[PubMed]
    [Google Scholar]
  31. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  32. Kluge AG, Farris FS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18:1–32
    [Google Scholar]
  33. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376[PubMed]
    [Google Scholar]
  34. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  35. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013; 195:413–418 [View Article][PubMed]
    [Google Scholar]
  36. Meier-Kolthoff JP, Klenk HP, Göker M. Taxonomic use of DNA G+C content and DNA–DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64:352–356 [View Article][PubMed]
    [Google Scholar]
  37. Kroppenstedt RM. Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics (Society for Applied Bacteriology Technical Series) vol. 20 London: Academic Press; 1985 pp. 173–179
    [Google Scholar]
  38. Labeda DP, Doroghazi JR, Ju KS, Metcalf WW. Taxonomic evaluation of Streptomyces albus and related species using multilocus sequence analysis and proposals to emend the description of Streptomyces albus and describe Streptomyces pathocidini sp. nov. Int J Syst Evol Microbiol 2014; 64:894–900 [View Article][PubMed]
    [Google Scholar]
  39. Rong XY, Huang Y. Taxonomic evaluation of the Streptomyces hygroscopicus clade using multilocus sequence analysis and DNA-DNA hybridization, validating the MLSA scheme for systematics of the whole genus. Syst Appl Microbiol 2012; 35:7–18 [View Article][PubMed]
    [Google Scholar]
  40. Wayne L, Brenner D, Colwell R, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology: report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464
    [Google Scholar]
  41. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  42. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003109
Loading
/content/journal/ijsem/10.1099/ijsem.0.003109
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error