%0 Journal Article %A Xin, Di %A Bisgaard, Magne %A Busse, Hans-Jürgen %A Olsen, Rikke H. %A Hess, Claudia %A Aalbæk, Bent %A Olsen, John E. %A Christensen, Henrik %T Reclassification of Bisgaard taxon 37 and taxon 44 as Psittacicella melopsittaci gen. nov., sp. nov., Psittacicella hinzii sp. nov. and Psittacicella gerlachiana sp. nov. within Psittacicellaceae fam. nov. of the order Pasteurellales %D 2019 %J International Journal of Systematic and Evolutionary Microbiology, %V 69 %N 2 %P 350-355 %@ 1466-5034 %R https://doi.org/10.1099/ijsem.0.003133 %K parrot %K 16S rRNA %K budgerigar %K Amazona %I Microbiology Society, %X Bacteria isolated from lesions as well as apparently normal tissues of psittacine birds have previously been reported as taxon 37 and taxon 44 of Bisgaard. 16S rRNA gene sequence comparisons revealed a distant relationship to members of Pasteurellaceae at the species, genus and family levels. The polar lipid profile consisted of the major components phosphatidylethanolamine and phosphatidylglycerol. A new family Psittacicellaceae fam. nov. is proposed with the type genus Psittacicella gen. nov. The new genus Psittacicella includes the type species Psittacicella melopsittaci sp. nov. with type strain B96/4T (=CCUG 70858T=DSM 105476T), Psittacicella hinzii sp. nov. with type strain 111T (=CCUG 52861T=CCM 8842T) and Psittacicella gerlachiana sp. nov. with type strain EEAB3T1T (=CCUG 70857T=DSM 105477T). In addition to the major polar lipids, strain 111T possessed the non-identified aminophospholipids APL1 and APL2 and trace amounts of four lipids (L1–L4) whereas strain B94/4T showed the minor unidentified aminophospholipids APL3 and APL2 and trace amounts of unidentified lipid L3. These results demonstrate that strain B96/4T can be distinguished from 111T based on presence/absence of the unidentified lipids APL1 and APL3. The total polar lipid profile of strain EEAB3T1T differed from B96/4Tonly in one minor lipid. Strain B96/4T can further be distinguished from 111T by acid formation from trehalose and raffinose and the α-glucosidase test. Strains 111T and EEAB3T1T can be separated based on acid formation from trehalose and the α-glucosidase test. Strains B96/4T and EEAB3T1T can be separated by acid formation from raffinose and eight signature indels in the RpoB protein. %U https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.003133