1887

Abstract

A Gram-stain-negative, strictly aerobic, rod-shaped motile bacterium with a single polar flagellum, designed strain ALS 81, was isolated from sediment sample collected in the AiLian Bay of Weihai, China. Phylogenetic analysis based on 16SrRNA gene sequence indicated that strain ALS 81 forms a lineage within the family   Alteromonadaceae   that is distinct from the most closely related genera   Agarivorans  (93.9–94.4 % 16S rRNA gene sequence similarity),   Celerinatantimonas   (92.0 %) and   Aliagarivorans   (91.6 %). Optimum growth occurred in the presence of 3–4 % (w/v) NaCl, at pH 8.0 and at 28 °C. The major fatty acids (>10 % of total fatty acids) were iso-C16 : 0 (27.3 %), anteiso-C15 : 0 (27.0 %) and anteiso-C17 : 0 (11.2 %). The predominant polar lipids were phosphatidylethanolamine, glycolipid and four unidentified polar lipids. The DNA G+C content of strain ALS 81 calculated on the basis of the genome sequence is 43.5 mol% and the genome size is 4.5 Mbp. The predominant isoprenoid quinone is ubiquinone 8. On the basis of polyphasic analysis, strain ALS 81 is considered to represent a novel species in a novel genus of the family   Alteromonadaceae  , for which the name Alginatibacterium sediminis gen. nov., sp. nov. is proposed. The type strain of the type species is ALS 81 (=KCTC 62397=MCCC 1K03481).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003187
2019-02-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/2/511.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003187&mimeType=html&fmt=ahah

References

  1. Shcherbakova V, Chuvilskaya N, Rivkina E, Demidov N, Uchaeva V et al. Celerinatantimonas yamalensis sp. nov., a cold-adapted diazotrophic bacterium from a cold permafrost brine. Int J Syst Evol Microbiol 2013; 63:4421–4427 [View Article][PubMed]
    [Google Scholar]
  2. Du ZJ, Lv GQ, Rooney AP, Miao TT, Xu QQ et al. Agarivorans gilvus sp. nov. isolated from seaweed. Int J Syst Evol Microbiol 2011; 61:493–496 [View Article][PubMed]
    [Google Scholar]
  3. Kim SG, Pheng S, Lee YJ, Eom MK, Shin DH. Agarivorans aestuarii sp. nov., an agar-degrading bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2016; 66:3119–3124 [View Article][PubMed]
    [Google Scholar]
  4. Sheu DS, Sheu SY, Lin KR, Chen YL, Chen WM et al. Planctobacterium marinum gen. nov., sp. nov., a new member of the family Alteromonadaceae isolated from seawater. Int J Syst Evol Microbiol 2017; 67:974–980 [View Article][PubMed]
    [Google Scholar]
  5. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG et al. Short Protocols in Molecular Biology: a Compendium of Methods from Current Protocols in Molecular Biology, 3rd ed. New York: Wiley; 1995
    [Google Scholar]
  6. Liu QQ, Wang Y, Li J, Du ZJ, Chen GJ. Saccharicrinis carchari sp. nov., isolated from a shark, and emended descriptions of the genus Saccharicrinis and Saccharicrinis fermentans. Int J Syst Evol Microbiol 2014; 64:2204–2209 [View Article][PubMed]
    [Google Scholar]
  7. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  8. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  9. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  10. Kurahashi M, Yokota A. Agarivorans albus gen. nov., sp. nov., a γ-proteobacterium isolated from marine animals. Int J Syst Evol Microbiol 2004; 54:693–697 [View Article][PubMed]
    [Google Scholar]
  11. Park S, Park JM, Jung YT, Yoon JH. Agarivorans litoreus sp. nov., a novel gammaproteobacterium isolated from seawater and emended description of the genus Agarivorans. Antonie van Leeuwenhoek 2014; 106:1041–1047 [View Article][PubMed]
    [Google Scholar]
  12. Cramer MJ, Haghshenas N, Bagwell CE, Matsui GY, Lovell CR. Celerinatantimonas diazotrophica gen. nov., sp. nov., a nitrogen-fixing bacterium representing a new family in the Gammaproteobacteria, Celerinatantimonadaceae fam. nov. Int J Syst Evol Microbiol 2011; 61:1053–1060 [View Article][PubMed]
    [Google Scholar]
  13. Jean WD, Huang SP, Liu TY, Chen JS, Shieh WY. Aliagarivorans marinus gen. nov., sp. nov. and Aliagarivorans taiwanensis sp. nov., facultatively anaerobic marine bacteria capable of agar degradation. Int J Syst Evol Microbiol 2009; 59:1880–1887 [View Article][PubMed]
    [Google Scholar]
  14. Beveridge TJ, Lawrence JR, Murray RG. Sampling and staining for light microscopy. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society of Microbiology; 2007 pp. 19–33
    [Google Scholar]
  15. Lyman J, Fleming RH. Composition of sea water. J Mar Res 1940; 3:134–146
    [Google Scholar]
  16. Tindall BJ, Sikorski J, Smibert RM, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society of Microbiology; 2007 pp. 330–393
    [Google Scholar]
  17. Shen P, Chen X-D. Experiment of Microbiology Beijing: Higher Education Press (English translation); 2008
    [Google Scholar]
  18. Teather RM, Wood PJ. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 1982; 43:777–780[PubMed]
    [Google Scholar]
  19. Lemos ML, Toranzo AE, Barja JL. Modified medium for the oxidation-fermentation test in the identification of marine bacteria. Appl Environ Microbiol 1985; 49:1541–1543[PubMed]
    [Google Scholar]
  20. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  21. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42:457–469 [View Article]
    [Google Scholar]
  22. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  23. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  24. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  25. Oren A. Life at high salt concentrations. In Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E et al. (editors) The Prokaryotes. A Handbook on the Biology of Bacteria New York Ecophysiology and Biochemistry vol. 2 Springer; 2006 pp. 75–76
    [Google Scholar]
  26. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003187
Loading
/content/journal/ijsem/10.1099/ijsem.0.003187
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error