1887

Abstract

A yellow-coloured, Gram-strain-negative, non-motile, cocci-shaped, strictly aerobic bacterium, designated HZ-65, was isolated from hyporheic freshwater in the Republic of Korea. Strain HZ-65 grew at 15–37 °C (optimum, 25–30 °C), pH 5.5–9.0 (optimum, pH 7.0) and 0–0.5 % NaCl (w/v; optimum at 0 % NaCl). Phylogenetic analysis based on the 16S rRNA gene showed that strain HZ-65 is a member of family Opitutaceae and is closely related to Opitutus terrae PB90-1 (94.0 % similarity), Cephaloticoccus primus CAG34 (93.0 %), and Cephaloticoccus capnophilus CV41 (92.7 %), while the similarities to other Opitutaceae -type strains were lower than 90.0 %. The DNA G+C content was 62.2 mol% and the quinone present was menaquinone-7. The predominant fatty acids were iso-C14 : 0, anteiso-C15 : 0, C16 : 0, and iso-C16 : 0, representing 70 % of the total fatty acids. The major polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Analysis of the HZ-65 genome revealed the presence of 300 genes that are involved in carbohydrate-active enzymes, which indicates the metabolic potential to degrade polysaccharides. The phenotypic, chemotaxonomic, genetic, and phylogenetic properties suggest that strain HZ-65 represents a novel species in a new genus within the family Opitutaceae, for which the name Nibricoccus aquaticus gen. nov., sp. nov., is proposed. The type strain of Nibricoccus aquaticus is HZ-65 (KACC 19333=NBRC 112907).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003198
2018-12-21
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/2/552.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003198&mimeType=html&fmt=ahah

References

  1. Henrici AT, Johnson DE. Studies of freshwater bacteria: II. stalked bacteria, a new order of Schizomycetes. J Bacteriol 1935; 30:61–93[PubMed]
    [Google Scholar]
  2. Hedlund BP, Gosink JJ, Staley JT. Verrucomicrobia div. nov., a new division of the bacteria containing three new species of Prosthecobacter. Antonie van Leeuwenhoek 1997; 72:29–38 [View Article][PubMed]
    [Google Scholar]
  3. Wagner M, Horn M. The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr Opin Biotechnol 2006; 17:241–249 [View Article][PubMed]
    [Google Scholar]
  4. Hugenholtz P, Goebel BM, Pace NR. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 1998; 180:4765–4774[PubMed]
    [Google Scholar]
  5. Schlesner H, Jenkins C, Staley J. The phylum Verrucomicrobia: a phylogenetically heterogeneous bacterial group. Prokaryotes 2006; 7:881–896
    [Google Scholar]
  6. Spring S, Bunk B, Spröer C, Schumann P, Rohde M et al. Characterization of the first cultured representative of Verrucomicrobia subdivision 5 indicates the proposal of a novel phylum. ISME J 2016; 10:2801–2816 [View Article][PubMed]
    [Google Scholar]
  7. Newton RJ, Jones SE, Eiler A, Mcmahon KD, Bertilsson S. A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 2011; 75:14–49 [View Article][PubMed]
    [Google Scholar]
  8. Zwart G, van Hannen EJ, Kamst-van Agterveld MP, van der Gucht K, Lindström ES et al. Rapid screening for freshwater bacterial groups by using reverse line blot hybridization. Appl Environ Microbiol 2003; 69:5875–5883 [View Article][PubMed]
    [Google Scholar]
  9. Freitas S, Hatosy S, Fuhrman JA, Huse SM, Welch DB et al. Global distribution and diversity of marine Verrucomicrobia. ISME J 2012; 6:1499–1505 [View Article][PubMed]
    [Google Scholar]
  10. Buckley DH, Schmidt TM. Environmental factors influencing the distribution of rRNA from Verrucomicrobia in soil. FEMS Microbiol Ecol 2001; 35:105–112 [View Article][PubMed]
    [Google Scholar]
  11. Buckley DH, Schmidt TM. Diversity and dynamics of microbial communities in soils from agro-ecosystems. Environ Microbiol 2003; 5:441–452 [View Article][PubMed]
    [Google Scholar]
  12. Navarrete AA, Soares T, Rossetto R, van Veen JA, Tsai SM et al. Verrucomicrobial community structure and abundance as indicators for changes in chemical factors linked to soil fertility. Antonie Van Leeuwenhoek 2015; 108:741–752 [View Article][PubMed]
    [Google Scholar]
  13. Schlesner H. Verrucomicrobium spinosum gen. nov., sp. nov.: a fimbriated prosthecate bacterium. Syst Appl Microbiol 1987; 10:54–56 [View Article]
    [Google Scholar]
  14. Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 2004; 54:1469–1476 [View Article][PubMed]
    [Google Scholar]
  15. Dubourg G, Lagier JC, Armougom F, Robert C, Audoly G et al. High-level colonisation of the human gut by Verrucomicrobia following broad-spectrum antibiotic treatment. Int J Antimicrob Agents 2013; 41:149–155 [View Article][PubMed]
    [Google Scholar]
  16. He S, Stevens SLR, Chan LK, Bertilsson S, Glavina del Rio T et al. Ecophysiology of freshwater verrucomicrobia inferred from metagenome-assembled genomes. mSphere 2017; 2:e0027717 [View Article][PubMed]
    [Google Scholar]
  17. Martinez-Garcia M, Brazel DM, Swan BK, Arnosti C, Chain PS et al. Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia. PLoS One 2012; 7:e35314 [View Article][PubMed]
    [Google Scholar]
  18. Connon SA, Giovannoni SJ. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 2002; 68:3878–3885 [View Article][PubMed]
    [Google Scholar]
  19. Yang SJ, Kang I, Cho JC. Expansion of cultured bacterial diversity by large-scale dilution-to extinction culturing from a single seawater sample. Microb Ecol 2016; 71:29–43 [View Article][PubMed]
    [Google Scholar]
  20. Cho JC, Giovannoni SJ. Parvularcula bermudensis gen. nov., sp. nov., a marine bacterium that forms a deep branch in the alpha-Proteobacteria. Int J Syst Evol Microbiol 2003; 53:1031–1036 [View Article][PubMed]
    [Google Scholar]
  21. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  22. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  23. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  24. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  25. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolism New York: Academic Press; 1969 pp. 21–132
    [Google Scholar]
  26. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  27. Fitch WM. Toward defining the course of evolution: Minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  28. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  29. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008; 31:241–250 [View Article][PubMed]
    [Google Scholar]
  30. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  31. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 2014; 42:D490–D495 [View Article][PubMed]
    [Google Scholar]
  32. Tindall BJ, Sikorski J, Smibert RM, Kreig NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: ASM Press; 2007 pp. 330–393
    [Google Scholar]
  33. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  34. Collins MD. Analysis of isoprenoid quinones. Methods Microbiol 1985; 18:329–363
    [Google Scholar]
  35. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  36. Chin KJ, Liesack W, Janssen PH. Opitutus terrae gen. nov., sp. nov., to accommodate novel strains of the division 'Verrucomicrobia' isolated from rice paddy soil. Int J Syst Evol Microbiol 2001; 51:1965–1968 [View Article][PubMed]
    [Google Scholar]
  37. van Passel MW, Kant R, Palva A, Copeland A, Lucas S et al. Genome sequence of the verrucomicrobium Opitutus terrae PB90-1, an abundant inhabitant of rice paddy soil ecosystems. J Bacteriol 2011; 193:2367–2368 [View Article][PubMed]
    [Google Scholar]
  38. Tegtmeier D, Belitz A, Radek R, Heimerl T, Brune A. Ereboglobus luteus gen. nov. sp. nov. from cockroach guts, and new insights into the oxygen relationship of the genera Opitutus and Didymococcus (Verrucomicrobia : Opitutaceae). Syst Appl Microbiol 2018; 41:101–112 [View Article]
    [Google Scholar]
  39. Wertz JT, Kim E, Breznak JA, Schmidt TM, Rodrigues JL. Genomic and physiological characterization of the Verrucomicrobia isolate Diplosphaera colitermitum gen. nov., sp. nov., reveals microaerophily and nitrogen fixation genes. Appl Environ Microbiol 2012; 78:1544–1555 [View Article][PubMed]
    [Google Scholar]
  40. Wertz JT, Kim E, Breznak JA, Schmidt TM, Rodrigues JLM. Correction for Wertz et al., "Genomic and Physiological Characterization of the Verrucomicrobia Isolate Didymococcus colitermitum gen. nov., sp. nov., Reveals Microaerophily and Nitrogen Fixation Genes". Appl Environ Microbiol 2017; 83:e0098717 [View Article][PubMed]
    [Google Scholar]
  41. Wertz JT, Kim E, Breznak JA, Schmidt TM, Rodrigues JLM. Second correction for wertz et al., "Genomic and Physiological Characterization of the Verrucomicrobia Isolate Geminisphaera colitermitum gen. nov., sp. nov., Reveals Microaerophily and Nitrogen Fixation Genes". Appl Environ Microbiol 2018; 84:e0095218 [View Article][PubMed]
    [Google Scholar]
  42. Lin JY, Russell JA, Sanders JG, Wertz JT. Cephaloticoccus gen. nov., a new genus of 'Verrucomicrobia' containing two novel species isolated from Cephalotes ant guts. Int J Syst Evol Microbiol 2016; 66:3034–3040 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003198
Loading
/content/journal/ijsem/10.1099/ijsem.0.003198
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error