1887

Abstract

A Gram-stain-negative, aerobic and rod-shaped strain, YLB-05, was isolated from a sample of deep-sea sediment (depth, 6796 m) from the Yap Trench. It was motile, oxidase-positive and catalase-positive. Growth was observed at salinities of 1–12 % (NaCl, w/v), with the optimum at 5 %. The strain was able to thrive at low (4 °C) temperatures, with the optimum at 37 °C, but did not grow at 50 °C. The optimum pressure for growth was 0.1 MPa with tolerance up to 50 MPa. The 16S rRNA gene sequencing analysis showed that YLB-05 was most closely related to Marinomonas communis LMG 2864 (97.8 %). Phylogenetic analysis placed strain YLB-05 within the genus Marinomonas . The average nucleotide identity and the DNA–DNA hybridization values between strain YLB-05 and closely related type strains were below the respective thresholds for species differentiation. The principal fatty acids were C16 : 0, summed feature 8 (C18 : 1  ω7c and/or C18 : 1  ω6c) and summed feature 3 (C16 : 1ω7c/C16 : 1  ω6c). The DNA G+C content was 45.7 mol%. The respiratory quinone was determined to be Q-8. The polar lipids were an unidentified phospholipid and an unidentified aminophospholipid. The combined genotypic and phenotypic data showed that strain YLB-05 represents a novel species within the genus Marinomonas , for which the name Marinomonas piezotolerans sp. nov. is proposed, with the type strain YLB-05 (=MCCC 1A12712=KCTC 62812).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003227
2019-01-16
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/3/739.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003227&mimeType=html&fmt=ahah

References

  1. Romanenko LA, Tanaka N, Frolova GM. Marinomonas arenicola sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2009; 59:2834–2838 [View Article][PubMed]
    [Google Scholar]
  2. Kristyanto S, Chaudhary DK, Lee SS, Kim J. Characterization of Marinomonas algicida sp. nov., a novel algicidal marine bacterium isolated from seawater. Int J Syst Evol Microbiol 2017; 67:4777–4784 [View Article][PubMed]
    [Google Scholar]
  3. Arahal DR, Lucena T, Macián MC, Ruvira MA, González JM et al. Marinomonas blandensis sp. nov., a novel marine gammaproteobacterium. Int J Syst Evol Microbiol 2016; 66:5544–5549 [View Article][PubMed]
    [Google Scholar]
  4. Chang HW, Roh SW, Kim KH, Nam YD, Yoon JH et al. Marinomonas basaltis sp. nov., a marine bacterium isolated from black sand. Int J Syst Evol Microbiol 2008; 58:2743–2747 [View Article][PubMed]
    [Google Scholar]
  5. Lucena T, Mesa J, Rodriguez-Llorente ID, Pajuelo E, Caviedes et al. Marinomonas spartinae sp. nov., a novel species with plant-beneficial properties. Int J Syst Evol Microbiol 2016; 66:1686–1691 [View Article][PubMed]
    [Google Scholar]
  6. Ojha AK, Verma A, Pal Y, Bhatt D, Mayilraj S et al. Marinomonas epiphytica sp. nov., isolated from a marine intertidal macroalga. Int J Syst Evol Microbiol 2017; 67:2746–2751 [View Article][PubMed]
    [Google Scholar]
  7. Lasa A, Pichon P, Diéguez AL, Romalde JL. Marinomonas gallaica sp. nov. and Marinomonas atlantica sp. nov., isolated from reared clams (Ruditapes decussatus). Int J Syst Evol Microbiol 2016; 66:3183–3188 [View Article][PubMed]
    [Google Scholar]
  8. van Landschoot A, de Ley J, Ley J DE. Intra- and Intergeneric Similarities of the rRNA Cistrons of Alteromonas, Marinomonas (gen. nov.) and Some Other Gram-negative Bacteria. Microbiology 1983; 129:3057–3074 [View Article]
    [Google Scholar]
  9. Delong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA 1992; 89:5685–5689 [View Article][PubMed]
    [Google Scholar]
  10. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  11. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  12. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  14. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  15. Rzhetsky A, Nei M. Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 1992; 35:367–375 [View Article][PubMed]
    [Google Scholar]
  16. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  17. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  18. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  19. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  20. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  21. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Inter j system bacteriol 1987; 37:463–464
    [Google Scholar]
  22. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  23. Skerman VBD. A Guide to the Identification of the Genera of Bacteria, 2nd ed. Baltimore: Williams & Wilkins; 1967
    [Google Scholar]
  24. Dong X-Z, Cai M-Y. Determinative Manual for Routine Bacteriology Beijing: Scientific Press (English translation); 2001
    [Google Scholar]
  25. Liu R, Wang L, Wei Y, Fang J. The hadal biosphere: Recent insights and new directions. Deep Sea Research Part II: Topical Studies in Oceanography 2018; 155:11–18 [View Article]
    [Google Scholar]
  26. Jamieson AJ, Fujii T, Mayor DJ, Solan M, Priede IG. Hadal trenches: the ecology of the deepest places on Earth. Trends Ecol Evol 2010; 25:190–197 [View Article][PubMed]
    [Google Scholar]
  27. Nunoura T, Takaki Y, Hirai M, Shimamura S, Makabe A et al. Hadal biosphere: insight into the microbial ecosystem in the deepest ocean on Earth. Proc Natl Acad Sci USA 2015; 112:1230–1236 [View Article][PubMed]
    [Google Scholar]
  28. Wang J, Li J, Dasgupta S, Zhang L, Golovko MY et al. Alterations in membrane phospholipid fatty acids of Gram-positive piezotolerant bacterium Sporosarcina sp. DSK25 in response to growth pressure. Lipids 2014; 49:347–356 [View Article][PubMed]
    [Google Scholar]
  29. Yayanos AA. Deep-sea piezophilic bacteria. Method Microbiol 2001; 30:615–637
    [Google Scholar]
  30. Zhang Z, Wu Y. Cultivation of microbes from the deep-sea environments. Deep Sea Research Part II: Topical Studies in Oceanography 2017
    [Google Scholar]
  31. Fang J, Zhang L, Bazylinski DA. Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry. Trends Microbiol 2010; 18:413–422 [View Article][PubMed]
    [Google Scholar]
  32. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. MIDI Technical Note 101 Newark, DE: MIDI; 1990
    [Google Scholar]
  33. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  34. Yoon JH, Kang SJ, Oh TK. Marinomonas dokdonensis sp. nov., isolated from sea water. Int J Syst Evol Microbiol 2005; 55:2303–2307 [View Article][PubMed]
    [Google Scholar]
  35. Jung YT, Oh TK, Yoon JH. Marinomonas hwangdonensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2012; 62:2062–2067 [View Article][PubMed]
    [Google Scholar]
  36. Kumari P, Poddar A, Das SK. Marinomonas fungiae sp. nov., isolated from the coral Fungia echinata from the Andaman Sea. Int J Syst Evol Microbiol 2014; 64:487–494 [View Article][PubMed]
    [Google Scholar]
  37. Kates M. Lipid extraction procedures. Techniques of Lipidology Amsterdam: Elsevier; 1986 pp. 100–111
    [Google Scholar]
  38. Kates M. Techniques of lipidology: isolation, analysis and identification of lipids. Laboratory Techniques in Biochemistry & Molecular Biology 1972; 3:0151–0155
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003227
Loading
/content/journal/ijsem/10.1099/ijsem.0.003227
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error