1887

Abstract

A halophilic archaeal strain, designated HD8-51, was isolated from the salted brown alga Laminaria. Cells of strain HD8-51 were motile, pleomorphic coccoid or ovoid, and formed red-pigmented colonies on agar plates. Strain HD8-51 grew optimally at 3.1 M NaCl, 0.03 M MgCl2, 30 °C and pH 7.0. Cells lysed in distilled water and the minimal NaCl concentration to prevent cell lysis was 0.85 M. Based on phylogenetic analyses of the 16S rRNA and rpoB′ genes, strain HD8-51 was most closely related to members of the genus Halorussus (92.3–95.6 % and 89.2–91.7% similarities, respectively). The average nucleotide identity values and in silico DNA–DNA hybridization values between strain HD8-51 and Halorussus rarus TBN4 were 81.69 and 24.5 %, respectively. The major polar lipids of strain HD8-51 were phosphatidic acid (PA), phosphatidylglycerol (PG), phosphatidylglycerol phosphate methyl ester (PGP-Me), phosphatidylglycerol sulfate (PGS) and five glycolipids, sulfated galactosyl mannosyl glucosyl diether (S-TGD-1), galactosyl mannosyl glucosyl diether (TGD-1), sulfated mannosyl glucosyl diether (S-DGD-1), mannosyl glucosyl diether (DGD-1) and diglycosyl diether (DGD-2). The DNA G+C content was 65.9 mol%. Based on phenotypic, chemotaxonomic and phylogenetic properties, strain HD8-51 represents a novel species of the genus Halorussus, for which the name Halorussus litoreus sp. nov. is proposed. The type strain is HD8-51 (=CGMCC 1.15333=JCM 31109).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003233
2019-01-17
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/3/767.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003233&mimeType=html&fmt=ahah

References

  1. Holdt SL, Kraan S. Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 2011; 23:543–597 [View Article]
    [Google Scholar]
  2. Cui HL, Yang X, Mou YZ. Salinarchaeum laminariae gen. nov., sp. nov.: a new member of the family Halobacteriaceae isolated from salted brown alga Laminaria. Extremophiles 2011; 15:625–631 [View Article][PubMed]
    [Google Scholar]
  3. Mou YZ, Qiu XX, Zhao ML, Cui HL, Oh D et al. Halohasta litorea gen. nov. sp. nov., and Halohasta litchfieldiae sp. nov., isolated from the Daliang aquaculture farm, China and from Deep Lake, Antarctica, respectively. Extremophiles 2012; 16:895–901 [View Article][PubMed]
    [Google Scholar]
  4. Han D, Cui HL. Halosimplex pelagicum sp. nov. and Halosimplex rubrum sp. nov., isolated from salted brown alga Laminaria, and emended description of the genus Halosimplex. Int J Syst Evol Microbiol 2014; 64:169–173 [View Article][PubMed]
    [Google Scholar]
  5. Han D, Cui HL. Haloplanus litoreus sp. nov. and Haloplanus ruber sp. nov., from a marine solar saltern and an aquaculture farm, respectively. Antonie van Leeuwenhoek 2014; 105:679–685 [View Article][PubMed]
    [Google Scholar]
  6. Han D, Cui HL, Li ZR. Halopenitus salinus sp. nov., isolated from the brine of salted brown alga Laminaria. Antonie van Leeuwenhoek 2014; 106:743–749 [View Article][PubMed]
    [Google Scholar]
  7. Han D, Cui HL. Halorubrum laminariae sp. nov., isolated from the brine of salted brown alga Laminaria. Antonie van Leeuwenhoek 2015; 107:217–223 [View Article][PubMed]
    [Google Scholar]
  8. Han D, Zhang WJ, Cui HL, Li ZR. Halovenus rubra sp. nov., isolated from salted brown alga Laminaria. Curr Microbiol 2015; 70:91–95 [View Article][PubMed]
    [Google Scholar]
  9. Cui HL, Gao X, Yang X, Xu XW. Halorussus rarus gen. nov., sp. nov., a new member of the family Halobacteriaceae isolated from a marine solar saltern. Extremophiles 2010; 14:493–499 [View Article][PubMed]
    [Google Scholar]
  10. Grant WD, Kamekura M, McGenity TJ, Class VA III. Halobacteria class. nov. In Boone DR, Castenholz RW, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 1 New York: Springer; 2001 pp. 294–334
    [Google Scholar]
  11. Yuan PP, Ye WT, Pan JX, Han D, Zhang WJ et al. Halorussus amylolyticus sp. nov., isolated from an inland salt lake. Int J Syst Evol Microbiol 2015; 65:3734–3738 [View Article][PubMed]
    [Google Scholar]
  12. Xu WD, Zhang WJ, Han D, Cui HL, Yang K. Halorussus ruber sp. nov., isolated from an inland salt lake of China. Arch Microbiol 2015; 197:91–95 [View Article][PubMed]
    [Google Scholar]
  13. Xu JQ, Xu WM, Li Y, Zhou Y, ZZ et al. Halorussus salinus sp. nov., isolated from a marine solar saltern. Arch Microbiol 2016; 198:957–961 [View Article][PubMed]
    [Google Scholar]
  14. Oren A, Ventosa A, Grant WD. Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 1997; 47:233–238 [View Article]
    [Google Scholar]
  15. Cui HL, Zhou PJ, Oren A, Liu SJ. Intraspecific polymorphism of 16S rRNA genes in two halophilic archaeal genera, Haloarcula and Halomicrobium. Extremophiles 2009; 13:31–37 [View Article][PubMed]
    [Google Scholar]
  16. Minegishi H, Kamekura M, Itoh T, Echigo A, Usami R et al. Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B' (rpoB') gene. Int J Syst Evol Microbiol 2010; 60:2398–2408 [View Article][PubMed]
    [Google Scholar]
  17. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  19. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  21. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  22. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:18 [View Article][PubMed]
    [Google Scholar]
  23. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article][PubMed]
    [Google Scholar]
  24. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article][PubMed]
    [Google Scholar]
  25. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  26. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  27. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  28. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  29. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003233
Loading
/content/journal/ijsem/10.1099/ijsem.0.003233
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error