1887

Abstract

A novel actinomycete, designated as strain H219, was isolated from rhizosphere soil collected under an Elephant ear plant (Colocasiaesculenta) in Bangkok, Thailand. Strain H219 was characterised using a polyphasic approach. Phylogenetic analysis of the 16S rRNA gene sequences revealed that this isolate was most closely related to Saccharopolyspora tripterygii JCM 32123 (97.6 %), Saccharopolyspora dendranthemae NBRC 108675 (97.5 %) and Saccharopolyspora flava NBRC 16345 (97.5 %). However, DNA–DNA hybridization analyses showed a low relatedness in the range of 39–48 % between the novel isolate and the above closely related strains. The cell-wall peptidoglycan of strain H219 contained meso-diaminopimelic acid. The diagnostic whole-cell sugars consisted of arabinose and galactose. The cellular fatty acid profile mainly comprised iso-C16 : 0, anteiso-C17 : 0, iso-C15 : 0, and 10-methyl C17 : 0. The major menaquinone was MK-9(H4). The detected phospholipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylethanolamine-containing hydroxylated fatty acids and an unknown phospholipid. The DNA G+C content was 70.6 mol%. Strain H219 represented chemotaxonomic and morphological characteristics that were consistent with members of the genus Saccharopolyspora . However, strain H219 could be distinguished from closely related strains by several phenotypic properties. Based on the data from the polyphasic studies, we propose that strain H219 is a novel species within the genus Saccharopolyspora , Saccharopolyspora rhizosphaerae sp. nov. The type strain is H219 (=TBRC 8564=NBRC 113388).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003307
2019-02-21
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/5/1299.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003307&mimeType=html&fmt=ahah

References

  1. Lacey J, Goodfellow M. A novel actinomycete from sugar-cane bagasse: Saccharopolyspora hirsuta gen. et sp. nov. J Gen Microbiol 1975; 88:75–85 [View Article]
    [Google Scholar]
  2. Korn-Wendisch F, Kempf A, Grund E, Kroppenstedt RM, Kutzner HJ. Transfer of Faenia rectivirgula Kurup and Agre 1983 to the genus Saccharopolyspora Lacey and Goodfellow 1975, elevation of Saccharopolyspora hirsuta subsp. taberi Labeda 1987 to species level, and emended description of the genus Saccharopolyspora. Int J Syst Bacteriol 1989; 39:430–441 [View Article]
    [Google Scholar]
  3. Embley TM, Wait R, Dobson G, Goodfellow M. Fatty acid composition in the classification of Saccharopolyspora hirsuta. FEMS Microbiol Lett 1987; 41:131–135 [View Article]
    [Google Scholar]
  4. Lechevalier MP, de Bievre C, Lechevalier H. Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 1977; 5:249–260 [View Article]
    [Google Scholar]
  5. Goodfellow M, Lacey J, Athalye M, Embley TM, Bowen T et al. Saccharopolyspora gregorii and Saccharopolyspora hordei: two new actinomycete species from fodder. Microbiology 1989; 135:2125–2139
    [Google Scholar]
  6. Embley TM. The family Pseudonocardiaceae. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH et al. (editors) The Prokaryotes vol. 1 Berlin: Springer; 1992 pp. 996–1027
    [Google Scholar]
  7. Iwasaki A, Deushi T, Watanabe I, Okuchi M, Itoh H et al. A new broad-spectrum aminoglycoside antibiotic complex, sporaricin. V. Sporaricin E. J Antibiot 1982; 35:517–519 [View Article][PubMed]
    [Google Scholar]
  8. Pimentel-Elardo SM, Gulder TAM, Hentschel U, Bringmann G. Cebulactams A1 and A2, new macrolactams isolated from Saccharopolyspora cebuensis, the first obligate marine strain of the genus Saccharopolyspora. Tetrahedron Lett 2008; 49:6889–6892 [View Article]
    [Google Scholar]
  9. Kirst HA. The spinosyn family of insecticides: realizing the potential of natural products research. J Antibiot 2010; 63:101–111 [View Article][PubMed]
    [Google Scholar]
  10. Hayakawa M, Sadakata T, Kajiura T, Nonomura H. New methods for the highly selective isolation of Micromonospora and Microbispora from soil. J Biosci Bioeng 1991; 72:320–326 [View Article]
    [Google Scholar]
  11. Hayakawa M, Nonomura H. Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Tech 1987; 65:501–509 [View Article]
    [Google Scholar]
  12. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  13. Jacobson E, Grauville WC, Fogs CE. Color Harmony Manual, 4th ed. Container Corporation of America; 1958
    [Google Scholar]
  14. Intra B, Matsumoto A, Inahashi Y, Omura S, Takahashi Y et al. Actinokineospora bangkokensis sp. nov., isolated from rhizospheric soil. Int J Syst Evol Microbiol 2013; 63:2655–2660 [View Article][PubMed]
    [Google Scholar]
  15. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  16. Williams ST, Goodfellow M, Alderson G, Waksman GS et al. Genus streptomyces Waksman and Henrici 1943, 339AL. In Williams ST, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriology vol. 4 Baltimore: Williams & Wilkins; 19891943 pp. 2452–2492
    [Google Scholar]
  17. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703–704 [View Article][PubMed]
    [Google Scholar]
  18. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231[PubMed]
    [Google Scholar]
  19. Uchida K, Aida . Acyl type of bacterial cell wall: its simple identification by colorimetric method. J Gen Appl Microbiol 1977; 23:249–260 [View Article]
    [Google Scholar]
  20. Tomiyasu I. Mycolic acid composition and thermally adaptative changes in Nocardia asteroides. J Bacteriol 1982; 151:828–837[PubMed]
    [Google Scholar]
  21. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  22. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar Lipid Composition in the Classification of Nocardia and Related Bacteria. Int J Syst Bacteriol 1977; 27:104–117 [View Article]
    [Google Scholar]
  23. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970; 20:435–443 [View Article]
    [Google Scholar]
  24. Také A, Matsumoto A, Ōmura S, Takahashi Y. Streptomyces lactacystinicus sp. nov. and Streptomyces cyslabdanicus sp. nov., producing lactacystin and cyslabdan, respectively. J Antibiot 2015; 68:322–327 [View Article][PubMed]
    [Google Scholar]
  25. Matsumoto A, Yamada M, Omura S, Takahashi Y. Microterricola viridarii gen. nov., sp. nov., a new member of the family Microbacteriaceae. Int J Syst Evol Microbiol 2008; 58:1019–1023 [View Article][PubMed]
    [Google Scholar]
  26. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  27. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  28. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  29. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  30. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  31. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  32. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  33. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  34. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  35. Saito H, Miura KI. Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 1963; 72:619–629 [View Article][PubMed]
    [Google Scholar]
  36. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  37. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60–78 [View Article][PubMed]
    [Google Scholar]
  38. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  39. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  40. Li J, Zhao GZ, Qin S, Huang HY, Zhu WY et al. Saccharopolyspora tripterygii sp. nov., an endophytic actinomycete isolated from the stem of Tripterygium hypoglaucum. Int J Syst Evol Microbiol 2009; 59:3040–3044 [View Article][PubMed]
    [Google Scholar]
  41. Zhang YJ, Zhang WD, Qin S, Bian GK, Xing K et al. Saccharopolyspora dendranthemae sp. nov. a halotolerant endophytic actinomycete isolated from a coastal salt marsh plant in Jiangsu, China. Antonie van Leeuwenhoek 2013; 103:1369–1376 [View Article][PubMed]
    [Google Scholar]
  42. Lu Z, Liu Z, Wang L, Zhang Y, Qi W et al. Saccharopolyspora flava sp. nov. and Saccharopolyspora thermophila sp.nov., novel actinomycetes from soil. Int J Syst Evol Microbiol 2001; 51:319–325 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003307
Loading
/content/journal/ijsem/10.1099/ijsem.0.003307
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error