1887

Abstract

A Gram-stain-negative, facultative aerobic, motile by a polar flagellum, rod-shaped strain, designated BEI247, was isolated from seawater at the bottom of the East China Sea. Phylogenetic analysis of the 16S rRNA gene and whole genome data affiliated it with the genus Photobacterium . It was most closely related to Photobacterium alginatilyticum P03D4 (97.36 % 16S rRNA gene similarity). Multi-locus sequence analysis (MLSA) revealed a distinct lineage with P. alginatilyticum P03D4 as its closest relative. Strain BEI247 was found to have lower than 86.0 % similarities to the type strains of its most closely related species in MLSA, less than 82.3 % using genome average nucleotide identities, and less than 25.3 % in DNA–DNA relatedness studies. Growth occurred at 10–37 °C (optimum, 24 °C), pH 5.0–8.0 (pH 7.0) and in the presence of 1–5 % (w/v) NaCl (3 %). The dominant fatty acids were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0. The polar lipids of strain BEI247 comprised phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, two phospholipids and one unknown lipid. The major respiratory quinone was ubiquinone-8 (Q-8). The DNA G+C content of strain BEI247 was 46.45 mol%. On the basis of the polyphasic evidence, strain BEI247 is proposed as representing a novel species of the genus Photobacterium , for which the name Photobacterium chitinilyticum sp. nov. is proposed. The type strain is BEI247 (=JCM 32689=MCCC 1K03517=KCTC 62619).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003343
2019-03-12
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/5/1477.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003343&mimeType=html&fmt=ahah

References

  1. Beijerinck M. Le photobacterium luminosum, bactérie lumineuse de la Mer du Nord. Arch Neerl Sci Exactes Nat 1889; 23:401–427
    [Google Scholar]
  2. Lucena T, Ruvira MA, Pascual J, Garay E, Macián MC et al. Photobacterium aphoticum sp. nov., isolated from coastal water. Int J Syst Evol Microbiol 2011; 61:1579–1584 [View Article][PubMed]
    [Google Scholar]
  3. Yoshizawa S, Wada M, Kita-Tsukamoto K, Yokota A, Kogure K. Photobacterium aquimaris sp. nov., a luminous marine bacterium isolated from seawater. Int J Syst Evol Microbiol 2009; 59:1438–1442 [View Article][PubMed]
    [Google Scholar]
  4. Gomez-Gil B, Roque A, Rotllant G, Peinado L, Romalde JL et al. Photobacterium swingsii sp. nov., isolated from marine organisms. Int J Syst Evol Microbiol 2011; 61:315–319 [View Article][PubMed]
    [Google Scholar]
  5. Chimetto LA, Cleenwerck I, Thompson CC, Brocchi M, Willems A et al. Photobacterium jeanii sp. nov., isolated from corals and zoanthids. Int J Syst Evol Microbiol 2010; 60:2843–2848 [View Article][PubMed]
    [Google Scholar]
  6. Kim YO, Kim KK, Park S, Kang SJ, Lee JH et al. Photobacterium gaetbulicola sp. nov., a lipolytic bacterium isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2010; 60:2587–2591 [View Article][PubMed]
    [Google Scholar]
  7. Lo N, Jin HM, Jeon CO. Photobacterium aestuarii sp. nov., a marine bacterium isolated from a tidal flat. Int J Syst Evol Microbiol 2014; 64:625–630 [View Article][PubMed]
    [Google Scholar]
  8. Nogi Y, Masui N, Kato C. Photobacterium profundum sp. nov., a new, moderately barophilic bacterial species isolated from a deep-sea sediment. Extremophiles 1998; 2:1–8 [View Article][PubMed]
    [Google Scholar]
  9. Reichelt JL, Baumann P. Taxonomy of the marine, luminous bacteria. Arch Mikrobiol 1973; 94:283–330 [View Article]
    [Google Scholar]
  10. Boisvert H, Chatelain R, Bassot JM. Étude d’un Photobacterium isolé de l’organe lumineux de poissons Leiognathidae. Ann Inst Pasteur 1967; 112:520–524
    [Google Scholar]
  11. Reichelt JL, Baumann P, Baumann L. Study of genetic relationships among marine species of the genera Beneckea and Photobacterium by means of in vitro DNA/DNA hybridization. Arch Microbiol 1976; 110:101–120 [View Article][PubMed]
    [Google Scholar]
  12. Park YD, Baik KS, Seong CN, Bae KS, Kim S et al. Photobacterium ganghwense sp. nov., a halophilic bacterium isolated from sea water. Int J Syst Evol Microbiol 2006; 56:745–749 [View Article][PubMed]
    [Google Scholar]
  13. Ast JC, Cleenwerck I, Engelbeen K, Urbanczyk H, Thompson FL et al. Photobacterium kishitanii sp. nov., a luminous marine bacterium symbiotic with deep-sea fishes. Int J Syst Evol Microbiol 2007; 57:2073–2078 [View Article][PubMed]
    [Google Scholar]
  14. Hilgarth M, Fuertes S, Ehrmann M, Vogel RF. Photobacterium carnosum sp. nov., isolated from spoiled modified atmosphere packaged poultry meat. Syst Appl Microbiol 2018; 41:44–50 [View Article][PubMed]
    [Google Scholar]
  15. Moore ERB, Arnscheidt A, Krüger A, Strömpl C, Mau M et al. Simplified protocols for the preparation of genomic DNA from bacterial cultures. In Molecular Microbial Ecology Manual 1999; 1:1–15
    [Google Scholar]
  16. Yoon SH, Ha SM, Lim J, Kwon S, Chun J et al. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  17. Zhang Z, Yu T, Xu T, Zhang XH. Aquimarina pacifica sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2014; 64:1991–1997 [View Article][PubMed]
    [Google Scholar]
  18. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  19. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  20. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  21. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  22. Wang X, Wang Y, Yang X, Sun H, Li B et al. Photobacterium alginatilyticum sp. nov., a marine bacterium isolated from bottom seawater. Int J Syst Evol Microbiol 2017; 67:1912–1917 [View Article][PubMed]
    [Google Scholar]
  23. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16s rrna sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  24. Sawabe T, Kita-Tsukamoto K, Thompson FL. Inferring the evolutionary history of vibrios by means of multilocus sequence analysis. J Bacteriol 2007; 189:7932–7936 [View Article][PubMed]
    [Google Scholar]
  25. Gabriel MW, Matsui GY, Friedman R, Lovell CR. Optimization of multilocus sequence analysis for identification of species in the genus Vibrio. Appl Environ Microbiol 2014; 80:5359–5365 [View Article][PubMed]
    [Google Scholar]
  26. Beveridge TJ, Lawrence JR, Murray RG. Sampling and staining for light microscopy. In Reddy CA, Beveridge TJ, Breznak TA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007 pp. 19–33
    [Google Scholar]
  27. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  28. Trick CG. Hydroxamate-siderophore production and utilization by marine eubacteria. Curr Microbiol 1989; 18:375–378 [View Article]
    [Google Scholar]
  29. Tindall BJ, Sikorski J, Smibert RM, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 2007 pp. 330–393
    [Google Scholar]
  30. Teather RM, Wood PJ. Use of congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 1982; 43:777–780[PubMed]
    [Google Scholar]
  31. Yoon JH, Lee KC, Kho YH, Kang KH, Kim CJ et al. Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 2002; 52:123–130 [View Article][PubMed]
    [Google Scholar]
  32. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  33. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  34. Collins MD, Shah HN. Fatty acid, menaquinone and polar lipid composition of Rothia dentocariosa. Arch Microbiol 1984; 137:247–249 [View Article]
    [Google Scholar]
  35. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  36. Xie CH, Yokota A. Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 2003; 49:345–349 [View Article][PubMed]
    [Google Scholar]
  37. Baumann P, Baumann L. Genus II. Photobacterium Beijerinck 1889, 401AL. In Krieg NR, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriology vol. 1 Baltimore: Williams & Wilkins; 1984 pp. 539–545
    [Google Scholar]
  38. Seo HJ, Bae SS, Lee JH, Kim SJ. Photobacterium frigidiphilum sp. nov., a psychrophilic, lipolytic bacterium isolated from deep-sea sediments of Edison Seamount. Int J Syst Evol Microbiol 2005; 55:1661–1666 [View Article][PubMed]
    [Google Scholar]
  39. Seo HJ, Bae SS, Yang SH, Lee JH, Kim SJ. Photobacterium aplysiae sp. nov., a lipolytic marine bacterium isolated from eggs of the sea hare Aplysia kurodai. Int J Syst Evol Microbiol 2005; 55:2293–2296 [View Article][PubMed]
    [Google Scholar]
  40. Yoon JH, Lee JK, Kim YO, Oh TK. Photobacterium lipolyticum sp. nov., a bacterium with lipolytic activity isolated from the Yellow Sea in Korea. Int J Syst Evol Microbiol 2005; 55:335–339 [View Article][PubMed]
    [Google Scholar]
  41. Johnson RM, Weisrock WP. Hyphomicrobium indicum sp. nov. (Hyphomicrobiaceae Douglas). Int J Syst Bacteriol 1969; 19:295–307 [View Article]
    [Google Scholar]
  42. Xie CH, Yokota A. Transfer of Hyphomicrobium indicum to the genus Photobacterium as Photobacterium indicum comb. nov. Int J Syst Evol Microbiol 2004; 54:2113–2116 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003343
Loading
/content/journal/ijsem/10.1099/ijsem.0.003343
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error