1887

Abstract

A Gram-stain-negative, strictly aerobic, oxidase- and catalase-positive, non-gliding, motile with a single polar flagellum, and short rod-shaped bacterial strain, designated XYN52, was isolated from a freshwater lake in the west of China. Phylogenetic analysis of the 16S rRNA gene determined that strain XYN52 was a member of the genus Pelagibacterium within the family Hyphomicrobiaceae . Strain XYN52 was able to grow at 4–37 °C (optimum, 30 °C), pH 6.0–9.0 (pH 7.5) and in the presence of up to 7.0 % w/v NaCl (0.5 %).The major quinone was ubiquinone 10. The major cellular fatty acids were C18 : 1ω6c/C18 : 1ω7c, C19 : 0ω8c cyclo and 11-methyl C18 : 1ω7c. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and three kinds of glycolipids. The genomic DNA G+C content was 64.5 mol%. On the basis of these data, strain XYN52 represents a novel species in the genus Pelagibacterium , for which the name Pelagibacterium lacus sp. nov. is proposed. The type strain is XYN52 (=KCTC 62845=MCCC 1H00348).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003398
2019-04-17
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/6/1807.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003398&mimeType=html&fmt=ahah

References

  1. Xu XW, Huo YY, Wang CS, Oren A, Cui HL et al. Pelagibacterium halotolerans gen. nov., sp. nov. and Pelagibacterium luteolum sp. nov., novel members of the family Hyphomicrobiaceae . Int J Syst Evol Microbiol 2011; 61:1817–1822 [View Article][PubMed]
    [Google Scholar]
  2. Wang G, Yu K, Wang Y, Su H, Wu H et al. Pelagibacterium lentulum sp. nov., a marine bacterium from the culture broth of Picochlorum sp. 122. Int J Syst Evol Microbiol 2017; 67:3182–3185 [View Article][PubMed]
    [Google Scholar]
  3. Lu H, Xing P, Phurbu D, Tang Q, Wu Q et al. Pelagibacterium montanilacus sp. nov., an alkaliphilic bacterium isolated from Lake Cuochuolong on the Tibetan Plateau. Int J Syst Evol Microbiol 2018; 68:2220–2225 [View Article][PubMed]
    [Google Scholar]
  4. Yang N, Sun C. Pelagibacterium lixinzhangensis sp. nov., a novel member of the genus Pelagibacterium . Curr Microbiol 2016; 72:551–556 [View Article][PubMed]
    [Google Scholar]
  5. Li Q, Xu Y, Liu K, Cai L, Fu Y et al. Pelagibacterium nitratireducens sp.nov., a marine Alphaproteobacterium isolated from the East China Sea. Curr Microbiol 2013; 66:450–455 [View Article][PubMed]
    [Google Scholar]
  6. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50 Pt 5:1861–1868 [View Article][PubMed]
    [Google Scholar]
  7. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; pp. 607–654
    [Google Scholar]
  8. Du ZJ, Wang Y, Dunlap C, Rooney AP, Chen GJ. Draconibacterium orientale gen. nov., sp. nov., isolated from two distinct marine environments, and proposal of Draconibacteriaceae fam. nov. Int J Syst Evol Microbiol 2014; 64:1690–1696 [View Article][PubMed]
    [Google Scholar]
  9. Dong XZ, Cai MY. Determination of biochemical characteristics. In Dong XZ, Cai MY. (editors) Manual for the Systematic Identification of General Bacteria Beijing: Science Press; 2001 pp. 370–398
    [Google Scholar]
  10. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996; 42:457–469 [View Article]
    [Google Scholar]
  11. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  12. Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S et al. ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter. Genome Res 2017; 27:768–777 [View Article][PubMed]
    [Google Scholar]
  13. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007; 23:673–679 [View Article][PubMed]
    [Google Scholar]
  14. Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997; 25:955–964 [View Article][PubMed]
    [Google Scholar]
  15. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article][PubMed]
    [Google Scholar]
  16. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  17. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  18. Fang DB, Han JR, Liu Y, Du ZJ. Seonamhaeicola marinus sp. nov., isolated from marine algae. Int J Syst Evol Microbiol 2017; 67:4857–4861 [View Article][PubMed]
    [Google Scholar]
  19. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  20. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  22. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  23. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  24. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003398
Loading
/content/journal/ijsem/10.1099/ijsem.0.003398
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error