1887

Abstract

Herein the members of the Subcommittee on Taxonomy of Rhizobia and Agrobacteria of the International Committee on Systematics of Prokaryotes review recent developments in rhizobial and agrobacterial taxonomy and propose updated minimal standards for the description of new species (and genera) in these groups. The essential requirements (minimal standards) for description of a new species are (1) a genome sequence of at least the proposed type strain and (2) evidence for differentiation from other species based on genome sequence comparisons. It is also recommended that (3) genetic variation within the species is documented with sequence data from several clearly different strains and (4) phenotypic features are described, and their variation documented with data from a relevant set of representative strains. Furthermore, it is encouraged that information is provided on (5) nodulation or pathogenicity phenotypes, as appropriate, with relevant gene sequences. These guidelines supplement the current rules of general bacterial taxonomy, which require (6) a name that conforms to the International Code of Nomenclature of Prokaryotes, (7) validation of the name by publication either directly in the International Journal of Systematic and Evolutionary Microbiology or in a validation list when published elsewhere, and (8) deposition of the type strain in two international culture collections in separate countries.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003426
2019-05-29
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/7/1852.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003426&mimeType=html&fmt=ahah

References

  1. de Lajudie PM, Young JPW. International Committee on Systematics of Prokaryotes, Subcommittee on the taxonomy of Rhizobium and Agrobacterium. Minutes of the meeting, Budapest, 25 August 2016. Int J Syst Evol Microbiol 2017; 67:2485–2494
    [Google Scholar]
  2. Estrada-de Los Santos P, Palmer M, Chávez-Ramírez B, Beukes C, Steenkamp ET et al. Whole genome analyses suggests that Burkholderia sensu lato contains two additional novel genera (Mycetohabitans gen. nov., and Trinickia gen. nov.): implications for the evolution of diazotrophy and nodulation in the Burkholderiaceae . Genes 2018; 9:389–412 [View Article][PubMed]
    [Google Scholar]
  3. Andrews M, Andrews ME. Specificity in legume-rhizobia symbioses. Int J Mol Sci 2017; 18:705–744 [View Article][PubMed]
    [Google Scholar]
  4. De Meyer SE, Willems A. Multilocus sequence analysis of Bosea species and description of Bosea lupini sp. nov., Bosea lathyri sp. nov. and Bosea robiniae sp. nov., isolated from legumes. Int J Syst Evol Microbiol 2012; 62:2505–2510 [View Article][PubMed]
    [Google Scholar]
  5. Chou YJ, Elliott GN, James EK, Lin KY, Chou JH et al. Labrys neptuniae sp. nov., isolated from root nodules of the aquatic legume Neptunia oleracea . Int J Syst Evol Microbiol 2007; 57:577–581 [View Article][PubMed]
    [Google Scholar]
  6. Martínez-Hidalgo P, Hirsch AM. The nodule microbiome: N2 -fixing rhizobia do not live alone. Phytobiomes J 2017; 1:70–82 [View Article]
    [Google Scholar]
  7. Andrews M, De Meyer S, James EK, Stępkowski T, Hodge S et al. Horizontal transfer of symbiosis genes within and between rhizobial genera: occurrence and importance. Genes 2018; 9:321–345 [View Article][PubMed]
    [Google Scholar]
  8. Remigi P, Zhu J, Young JPW, Masson-Boivin C. Symbiosis within symbiosis: evolving nitrogen-fixing legume symbionts. Trends Microbiol 2016; 24:63–75 [View Article][PubMed]
    [Google Scholar]
  9. Mousavi SA, Willems A, Nesme X, de Lajudie P, Lindström K. Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol 2015; 38:84–90 [View Article][PubMed]
    [Google Scholar]
  10. Kuzmanović N, Smalla K, Gronow S, Puławska J. Rhizobium tumorigenes sp. nov., a novel plant tumorigenic bacterium isolated from cane gall tumors on thornless blackberry. Sci Rep 2018; 8:1–8 [View Article][PubMed]
    [Google Scholar]
  11. Puławska J, Kuzmanović N, Willems A, Pothier JF. Pararhizobium polonicum sp. nov. isolated from tumors on stone fruit rootstocks. Syst Appl Microbiol 2016; 39:164–169 [View Article][PubMed]
    [Google Scholar]
  12. Dijkshoorn L. International Committee on Systematics of Prokaryotes. Minutes of the meetings, 7, 8 and 9 July 2017, Valencia, Spain. Int J Syst Evol Microbiol 2018; 68:2104–2110 [View Article][PubMed]
    [Google Scholar]
  13. Parker CT, Tindall BJ, Garrity GM. International Code of Nomenclature of Prokaryotes. Prokaryotic code (2008 revision). Int J Syst Evol Microbiol 2019; 69:S1–S111
    [Google Scholar]
  14. Graham PH, Sadowsky MJ, Keyser HH, Barnet YM, Bradley RS et al. Proposed minimal standards for the description of new genera and species of root- and stem-nodulating bacteria. Int J Syst Bacteriol 1991; 41:582–587 [View Article]
    [Google Scholar]
  15. Lindstrom K. International Committee on Systematics of Prokaryotes: Subcommittee on the taxonomy of Agrobacterium and Rhizobium. Minutes of the meeting, 4 July 2001, Hamilton, Canada. Int J Syst Evol Microbiol 2002; 52:2337 [View Article]
    [Google Scholar]
  16. Lindström K, Martínez-Romero ME. International Committee on Systematics of Prokaryotes; Subcommittee on the taxonomy of Agrobacterium and Rhizobium. Minutes of the meeting, 26 July 2004, Toulouse, France. Int J Syst Evol Microbiol 2005; 55:1383
    [Google Scholar]
  17. Lindström K, Martínez-Romero E. International Committee on Systematics of Prokaryotes; Subcommittee on the taxonomy of Agrobacterium and Rhizobium. Minutes of the meeting, 23–24 July 2006, Åarhus, Denmark. Int J Syst Evol Microbiol 2007; 57:1365–1366
    [Google Scholar]
  18. Lindström K, Young JPW. International Committee on Systematics of Prokaryotes; Subcommittee on the taxonomy of Agrobacterium and Rhizobium. Minutes of the meeting, 31 August 2008, Gent, Belgium. Int J Syst Evol Microbiol 2009; 59:921–922
    [Google Scholar]
  19. Lindström K, Young JPW. International Committee on Systematics of Prokaryotes; Subcommittee on the taxonomy of Agrobacterium and Rhizobium. Minutes of the meeting, 7 September 2010, Geneva, Switzerland. Int J Syst Evol Microbiol 2011; 61:3089–3093
    [Google Scholar]
  20. de Lajudie P, Martínez-Romero E. International Committee on Systematics of Prokaryotes; Subcommittee on the Taxonomy of Agrobacterium and Rhizobium. Minutes of the meeting, 7 September 2014, Tenerife, Spain. Int J Syst Evol Microbiol 2017; 67:516–520 [View Article][PubMed]
    [Google Scholar]
  21. de Lajudie PM, Young JPW. International Committee on Systematics of Prokaryotes; Subcommittee on the taxonomy of rhizobia and agrobacteria. Minutes of the closed meeting, granada, 4 September 2017. Int J Syst Evol Microbiol 2018; 68:3363–3368 [View Article][PubMed]
    [Google Scholar]
  22. Whitman WB. Intent of the nomenclatural code and recommendations about naming new species based on genomic sequences. Bull BISMiS 2011; 2:135–139
    [Google Scholar]
  23. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  24. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  25. Vandamme P, Pot B, Gillis M, De Vos P, Kersters K. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 1996; 60:407–438
    [Google Scholar]
  26. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kämpfer P et al. Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 2002; 52:1043–1047
    [Google Scholar]
  27. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 2010; 60:249–266 [View Article][PubMed]
    [Google Scholar]
  28. Mahato NK, Gupta V, Singh P, Kumari R, Verma H et al. Microbial taxonomy in the era of OMICS: application of DNA sequences, computational tools and techniques. Antonie van Leeuwenhoek 2017; 110:1357–1371 [View Article][PubMed]
    [Google Scholar]
  29. Thompson CC, Vieira NM, Vicente AC, Thompson FL. Towards a genome-based taxonomy of Mycoplasmas. Infect Genet Evol 2011; 11:1798–1804 [View Article][PubMed]
    [Google Scholar]
  30. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E et al. Microbial genomic taxonomy. BMC Genomics 2013; 14:913–921 [View Article][PubMed]
    [Google Scholar]
  31. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article]
    [Google Scholar]
  32. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article][PubMed]
    [Google Scholar]
  33. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article]
    [Google Scholar]
  34. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60–74 [View Article]
    [Google Scholar]
  35. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M et al. Versatile and open software for comparing large genomes. Genome Biol 2004; 5:R12 [View Article]
    [Google Scholar]
  36. Deloger M, El Karoui M, Petit MA. A genomic distance based on MUM indicates discontinuity between most bacterial species and genera. J Bacteriol 2009; 191:91–99 [View Article][PubMed]
    [Google Scholar]
  37. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  38. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  39. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015; 43:6761–6771 [View Article][PubMed]
    [Google Scholar]
  40. Arahal DR. Whole-genome analyses: average nucleotide identity. In Goodfellow M, Sutcliffe I, Chun J. (editors) Methods in Microbiology Academic Press; 2014 pp. 103–122
    [Google Scholar]
  41. Kim M, Park S-C, Baek I, Chun J. Large-scale evaluation of experimentally determined DNA G+C contents with whole genome sequences of prokaryotes. Syst Appl Microbiol 2015; 38:79–83 [View Article]
    [Google Scholar]
  42. Ormeño-Orrillo E, Martínez-Romero E. Phenotypic tests in Rhizobium species description: an opinion and (a sympatric speciation) hypothesis. Syst Appl Microbiol 2013; 36:145–147 [View Article][PubMed]
    [Google Scholar]
  43. Sangal V, Goodfellow M, Jones AL, Schwalbe EC, Blom J et al. Next-generation systematics: An innovative approach to resolve the structure of complex prokaryotic taxa. Sci Rep 2016; 6:38392 [View Article][PubMed]
    [Google Scholar]
  44. Vandamme P, Peeters C. Time to revisit polyphasic taxonomy. Antonie van Leeuwenhoek 2014; 106:57–65 [View Article][PubMed]
    [Google Scholar]
  45. Coenye T, Gevers D, van De Peer Y, Vandamme P, Swings J. Towards a prokaryotic genomic taxonomy. FEMS Microbiol Rev 2005; 29:147–167 [View Article][PubMed]
    [Google Scholar]
  46. Gevers D, Dawyndt P, Vandamme P, Willems A, Vancanneyt M et al. Stepping stones towards a new prokaryotic taxonomy. Philos Trans R Soc Lond B Biol Sci 2006; 361:1911–1916 [View Article][PubMed]
    [Google Scholar]
  47. Sutcliffe IC, Trujillo ME, Goodfellow M. A call to arms for systematists: revitalising the purpose and practises underpinning the description of novel microbial taxa. Antonie van Leeuwenhoek 2012; 101:13–20 [View Article]
    [Google Scholar]
  48. Sutcliffe IC, Trujillo ME, Whitman WB, Goodfellow M. A call to action for the International Committee on Systematics of Prokaryotes. Trends Microbiol 2013; 21:51–52 [View Article][PubMed]
    [Google Scholar]
  49. Vinuesa P, Ochoa-Sánchez LE, Contreras-Moreira B. GET_PHYLOMARKERS, a software package to select optimal orthologous clusters for phylogenomics and inferring pan-genome phylogenies, used for a critical geno-taxonomic revision of the genus Stenotrophomonas . Front Microbiol 2018; 9:771 [View Article][PubMed]
    [Google Scholar]
  50. Young JM, Kuykendall LD, Martínez-Romero E, Kerr A, Sawada H. A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis . Int J Syst Evol Microbiol 2001; 51:89–103 [View Article][PubMed]
    [Google Scholar]
  51. Ramírez-Bahena MH, Vial L, Lassalle F, Diel B, Chapulliot D et al. Single acquisition of protelomerase gave rise to speciation of a large and diverse clade within the Agrobacterium/Rhizobium supercluster characterized by the presence of a linear chromid. Mol Phylogenet Evol 2014; 73:202–207 [View Article][PubMed]
    [Google Scholar]
  52. Mousavi SA, Österman J, Wahlberg N, Nesme X, Lavire C et al. Phylogeny of the Rhizobium-Allorhizobium-Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst Appl Microbiol 2014; 37:208–215 [View Article][PubMed]
    [Google Scholar]
  53. Gan HM, Savka MA. One more decade of Agrobacterium taxonomy. Current Topics in Microbiology and Immunology Berlin, Heidelberg: Springer; 2018 pp. 1–14
    [Google Scholar]
  54. Gaunt MW, Turner SL, Rigottier-Gois L, Lloyd-Macgilp SA, Young JPW. Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 2001; 51:2037–2048 [View Article][PubMed]
    [Google Scholar]
  55. Turner SL, Young JPW. The glutamine synthetases of rhizobia: phylogenetics and evolutionary implications. Mol Biol Evol 2000; 17:309–319 [View Article][PubMed]
    [Google Scholar]
  56. Wernegreen JJ, Riley MA. Comparison of the evolutionary dynamics of symbiotic and housekeeping loci: a case for the genetic coherence of rhizobial lineages. Mol Biol Evol 1999; 16:98–113 [View Article][PubMed]
    [Google Scholar]
  57. Martens M, Delaere M, Coopman R, De Vos P, Gillis M et al. Multilocus sequence analysis of Ensifer and related taxa. Int J Syst Evol Microbiol 2007; 57:489–503 [View Article]
    [Google Scholar]
  58. Martens M, Dawyndt P, Coopman R, Gillis M, De Vos P et al. Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol 2008; 58:200–214 [View Article]
    [Google Scholar]
  59. Parker MA. rRNA and dnaK relationships of Bradyrhizobium sp. nodule bacteria from four papilionoid legume trees in Costa Rica. Syst Appl Microbiol 2004; 27:334–342 [View Article][PubMed]
    [Google Scholar]
  60. Moulin L, Béna G, Boivin-Masson C, Stepkowski T. Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within the Bradyrhizobium genus. Mol Phylogenet Evol 2004; 30:720–732 [View Article][PubMed]
    [Google Scholar]
  61. van Berkum P, Terefework Z, Paulin L, Suomalainen S, Lindström K et al. Discordant phylogenies within the rrn loci of rhizobia. J Bacteriol 2003; 185:2988–2998 [View Article][PubMed]
    [Google Scholar]
  62. Silva C, Vinuesa P, Eguiarte LE, Souza V, Martínez-Romero E. Evolutionary genetics and biogeographic structure of Rhizobium gallicum sensu lato, a widely distributed bacterial symbiont of diverse legumes. Mol Ecol 2005; 14:4033–4050 [View Article][PubMed]
    [Google Scholar]
  63. Vinuesa P, Silva C, Lorite MJ, Izaguirre-Mayoral ML, Bedmar EJ et al. Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Syst Appl Microbiol 2005; 28:702–716 [View Article][PubMed]
    [Google Scholar]
  64. Vinuesa P, Silva C, Werner D, Martínez-Romero E. Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol 2005; 34:29–54 [View Article]
    [Google Scholar]
  65. Vinuesa P, León-Barrios M, Silva C, Willems A, Jarabo-Lorenzo A et al. Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int J Syst Evol Microbiol 2005; 55:569–575 [View Article][PubMed]
    [Google Scholar]
  66. Vinuesa P, Rojas-Jiménez K, Contreras-Moreira B, Mahna SK, Prasad BN et al. Multilocus sequence analysis for assessment of the biogeography and evolutionary genetics of four Bradyrhizobium species that nodulate soybeans on the asiatic continent. Appl Environ Microbiol 2008; 74:6987–6996 [View Article][PubMed]
    [Google Scholar]
  67. Rivas R, Martens M, de Lajudie P, Willems A. Multilocus sequence analysis of the genus Bradyrhizobium . Syst Appl Microbiol 2009; 32:101–110 [View Article][PubMed]
    [Google Scholar]
  68. Nzoué A, Miché L, Klonowska A, Laguerre G, de Lajudie P et al. Multilocus sequence analysis of bradyrhizobia isolated from Aeschynomene species in Senegal. Syst Appl Microbiol 2009; 32:400–412 [View Article]
    [Google Scholar]
  69. Merabet C, Martens M, Mahdhi M, Zakhia F, Sy A et al. Multilocus sequence analysis of root nodule isolates from Lotus arabicus (Senegal), Lotus creticus, Argyrolobium uniflorum and Medicago sativa (Tunisia) and description of Ensifer numidicus sp. nov. and Ensifer garamanticus sp. nov. Int J Syst Evol Microbiol 2010; 60:664–674 [View Article]
    [Google Scholar]
  70. Hernández-Lucas I, Rogel-Hernández MA, Segovia L, Rojas-Jiménez K, Martínez-Romero E. Phylogenetic relationships of rhizobia based on citrate synthase gene sequences. Syst Appl Microbiol 2004; 27:703–706 [View Article][PubMed]
    [Google Scholar]
  71. Eardly BD, Nour SM, van Berkum P, Selander RK. Rhizobial 16S rRNA and dnaK genes: mosaicism and the uncertain phylogenetic placement of Rhizobium galegae . Appl Environ Microbiol 2005; 71:1328–1335 [View Article][PubMed]
    [Google Scholar]
  72. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea . Int J Syst Evol Microbiol 2014; 64:316–324 [View Article][PubMed]
    [Google Scholar]
  73. Young JPW, Haukka KE. Diversity and phylogeny of rhizobia. New Phytologist 1996; 133:87–94
    [Google Scholar]
  74. Tian CF, Zhou YJ, Zhang YM, Li QQ, Zhang YZ et al. Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations. Proc Natl Acad Sci USA 2012; 109:8629–8634 [View Article][PubMed]
    [Google Scholar]
  75. López-López A, Rogel-Hernández MA, Barois I, Ortiz Ceballos AI, Martínez J et al. Rhizobium grahamii sp. nov., from nodules of Dalea leporina, Leucaena leucocephala and Clitoria ternatea, and Rhizobium mesoamericanum sp. nov., from nodules of Phaseolus vulgaris, siratro, cowpea and Mimosa pudica . Int J Syst Evol Microbiol 2012; 62:2264–2271 [View Article][PubMed]
    [Google Scholar]
  76. López-Guerrero MG, Ormeño-Orrillo E, Velázquez E, Rogel MA, Acosta JL et al. Rhizobium etli taxonomy revised with novel genomic data and analyses. Syst Appl Microbiol 2012; 35:353–358 [View Article][PubMed]
    [Google Scholar]
  77. Ribeiro RA, Rogel MA, López-López A, Ormeño-Orrillo E, Barcellos FG et al. Reclassification of Rhizobium tropici type A strains as Rhizobium leucaenae sp. nov. Int J Syst Evol Microbiol 2012; 62:1179–1184 [View Article][PubMed]
    [Google Scholar]
  78. Delamuta JR, Ribeiro RA, Ormeño-Orrillo E, Melo IS, Martínez-Romero E et al. Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum group Ia strains as Bradyrhizobium diazoefficiens sp. nov. Int J Syst Evol Microbiol 2013; 63:3342–3351 [View Article][PubMed]
    [Google Scholar]
  79. Delamuta JR, Ribeiro RA, Ormeño-Orrillo E, Parma MM, Melo IS et al. Bradyrhizobium tropiciagri sp. nov. and Bradyrhizobium embrapense sp. nov., nitrogen-fixing symbionts of tropical forage legumes. Int J Syst Evol Microbiol 2015; 65:4424–4433 [View Article][PubMed]
    [Google Scholar]
  80. Dall'Agnol RF, Ribeiro RA, Ormeño-Orrillo E, Rogel MA, Delamuta JR et al. Rhizobium freirei sp. nov., a symbiont of Phaseolus vulgaris that is very effective at fixing nitrogen. Int J Syst Evol Microbiol 2013; 63:4167–4173 [View Article][PubMed]
    [Google Scholar]
  81. Dall'Agnol RF, Ribeiro RA, Delamuta JRM, Ormeño-Orrillo E, Rogel MA et al. Rhizobium paranaense sp. nov., an effective N2-fixing symbiont of common bean (Phaseolus vulgaris L.) with broad geographical distribution in Brazil. Int J Syst Evol Microbiol 2014; 64:3222–3229 [View Article]
    [Google Scholar]
  82. Durán D, Rey L, Mayo J, Zúñiga-Dávila D, Imperial J et al. Bradyrhizobium paxllaeri sp. nov. and Bradyrhizobium icense sp. nov., nitrogen-fixing rhizobial symbionts of Lima bean (Phaseolus lunatus L.) in Peru. Int J Syst Evol Microbiol 2014; 64:2072–2078 [View Article]
    [Google Scholar]
  83. Durán D, Rey L, Navarro A, Busquets A, Imperial J et al. Bradyrhizobium valentinum sp. nov., isolated from effective nodules of Lupinus mariae-josephae, a lupine endemic of basic-lime soils in Eastern Spain. Syst Appl Microbiol 2014; 37:336–341 [View Article]
    [Google Scholar]
  84. Sawana A, Adeolu M, Gupta RS. Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 2014; 5:429–451 [View Article][PubMed]
    [Google Scholar]
  85. Kuzmanović N, Puławska J, Prokić A, Ivanović M, Zlatković N et al. Agrobacterium arsenijevicii sp. nov., isolated from crown gall tumors on raspberry and cherry plum. Syst Appl Microbiol 2015; 38:373–378 [View Article][PubMed]
    [Google Scholar]
  86. Ormeño-Orrillo E, Servín-Garcidueñas LE, Rogel MA, González V, Peralta H et al. Taxonomy of rhizobia and agrobacteria from the Rhizobiaceae family in light of genomics. Syst Appl Microbiol 2015; 38:287–291 [View Article]
    [Google Scholar]
  87. Steenkamp ET, van Zyl E, Beukes CW, Avontuur JR, Chan WY et al. Burkholderia kirstenboschensis sp. nov. nodulates papilionoid legumes indigenous to South Africa. Syst Appl Microbiol 2015; 38:545–554 [View Article]
    [Google Scholar]
  88. Rashid MH, Young JPW, Everall I, Clercx P, Willems A et al. Average nucleotide identity of genome sequences supports the description of Rhizobium lentis sp. nov., Rhizobium bangladeshense sp. nov. and Rhizobium binae sp. nov. from lentil (Lens culinaris) nodules. Int J Syst Evol Microbiol 2015; 65:3037–3045 [View Article][PubMed]
    [Google Scholar]
  89. Diouf F, Diouf D, Klonowska A, Le Queré A, Bakhoum N et al. Genetic and genomic diversity studies of Acacia symbionts in Senegal reveal new species of Mesorhizobium with a putative geographical pattern. PLoS One 2015; 10:e0117667 [View Article][PubMed]
    [Google Scholar]
  90. Ribeiro RA, Martins TB, Ormeño-Orrillo E, Marçon Delamuta JR, Rogel MA et al. Rhizobium ecuadorense sp. nov., an indigenous N2-fixing symbiont of the Ecuadorian common bean (Phaseolus vulgaris L.) genetic pool. Int J Syst Evol Microbiol 2015; 65:3162–3169 [View Article][PubMed]
    [Google Scholar]
  91. Torres Tejerizo G, Rogel MA, Ormeño-Orrillo E, Althabegoiti MJ, Nilsson JF et al. Rhizobium favelukesii sp. nov., isolated from the root nodules of alfalfa (Medicago sativa L). Int J Syst Evol Microbiol 2016; 66:4451–4457 [View Article][PubMed]
    [Google Scholar]
  92. Le Quéré A, Tak N, Gehlot HS, Lavire C, Meyer T et al. Genomic characterization of Ensifer aridi, a proposed new species of nitrogen-fixing rhizobium recovered from Asian, African and American deserts. BMC Genomics 2017; 18:85–109 [View Article][PubMed]
    [Google Scholar]
  93. Aserse AA, Woyke T, Kyrpides NC, Whitman WB, Lindström K. Draft genome sequence of type strain HBR26T and description of Rhizobium aethiopicum sp. nov. Stand Genomic Sci 2017; 12:14–30 [View Article][PubMed]
    [Google Scholar]
  94. Yan J, Yan H, Liu LX, Chen WF, Zhang XX et al. Rhizobium hidalgonense sp. nov., a nodule endophytic bacterium of Phaseolus vulgaris in acid soil. Arch Microbiol 2017; 199:97–104 [View Article][PubMed]
    [Google Scholar]
  95. Baraúna AC, Rouws LF, Simoes-Araujo JL, dos Reis Junior FB, Iannetta PP et al. Rhizobium altiplani sp. nov., isolated from effective nodules on Mimosa pudica growing in untypically alkaline soil in central Brazil. Int J Syst Evol Microbiol 2016; 66:4118–4124 [View Article][PubMed]
    [Google Scholar]
  96. Michel DC, Passos SR, Simões-Araujo JL, Baraúna AC, da Silva K et al. Bradyrhizobium centrolobii and Bradyrhizobium macuxiense sp. nov. isolated from Centrolobium paraense grown in soil of Amazonia, Brazil. Arch Microbiol 2017; 199:657–664 [View Article][PubMed]
    [Google Scholar]
  97. Bournaud C, Moulin L, Cnockaert M, De Faria S, Prin Y et al. Paraburkholderia piptadeniae sp. nov. and Paraburkholderia ribeironis sp. nov., two root-nodulating symbiotic species of Piptadenia gonoacantha in Brazil. Int J Syst Evol Microbiol 2017; 67:432–440
    [Google Scholar]
  98. Oren A, Garrity GM. Then and now: a systematic review of the systematics of prokaryotes in the last 80 years. Antonie van Leeuwenhoek 2014; 106:43–56 [View Article][PubMed]
    [Google Scholar]
  99. Young JPW. Bacteria are smartphones and mobile genes are apps. Trends Microbiol 2016; 24:931–932 [View Article][PubMed]
    [Google Scholar]
  100. Kuzmanović N, Puławska J, Smalla K, Nesme X. Agrobacterium rosae sp. nov., isolated from galls on different agricultural crops. Syst Appl Microbiol 2018; 41:191–197 [View Article]
    [Google Scholar]
  101. Zhang YM, Tian CF, Sui XH, Chen WF, Chen WX. Robust markers reflecting phylogeny and taxonomy of rhizobia. PLoS One 2012; 7:e44936 [View Article][PubMed]
    [Google Scholar]
  102. Aserse AA, Räsänen LA, Assefa F, Hailemariam A, Lindström K. Phylogeny and genetic diversity of native rhizobia nodulating common bean (Phaseolus vulgaris L.) in Ethiopia. Syst Appl Microbiol 2012; 35:120–131 [View Article][PubMed]
    [Google Scholar]
  103. Degefu T, Wolde-meskel E, Frostegård Å. Phylogenetic multilocus sequence analysis identifies seven novel Ensifer genospecies isolated from a less-well-explored biogeographical region in East Africa. Int J Syst Evol Microbiol 2012; 62:2286–2295 [View Article]
    [Google Scholar]
  104. Rincón-Rosales R, Villalobos-Escobedo JM, Rogel MA, Martinez J, Ormeño-Orrillo E et al. Rhizobium calliandrae sp. nov., Rhizobium mayense sp. nov. and Rhizobium jaguaris sp. nov., rhizobial species nodulating the medicinal legume Calliandra grandiflora . Int J Syst Evol Microbiol 2013; 63:3423–3429 [View Article][PubMed]
    [Google Scholar]
  105. Laguerre G, Mavingui P, Allard MR, Charnay MP, Louvrier P et al. Typing of rhizobia by PCR DNA fingerprinting and PCR-restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions: application to Rhizobium leguminosarum and its different biovars. Appl Environ Microbiol 1996; 62:2029–2036[PubMed]
    [Google Scholar]
  106. Versalovic J, Schneider M, De Bruijn FJ, Lupski JR. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 1994; 5:25–40
    [Google Scholar]
  107. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article][PubMed]
    [Google Scholar]
  108. Ramírez-Bahena MH, García-Fraile P, Peix A, Valverde A, Rivas R et al. Revision of the taxonomic status of the species Rhizobium leguminosarum (Frank 1879) Frank 1889AL, Rhizobium phaseoli Dangeard 1926AL and Rhizobium trifolii Dangeard 1926AL. R. trifolii is a later synonym of R. leguminosarum. Reclassification of the strain R. leguminosarum DSM 30132 (=NCIMB 11478) as Rhizobium pisi sp. nov. Int J Syst Evol Microbiol 2008; 58:2484–2490 [View Article][PubMed]
    [Google Scholar]
  109. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 2016; 17:132–146 [View Article][PubMed]
    [Google Scholar]
  110. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018; 9:5114–5122 [View Article]
    [Google Scholar]
  111. Lees JA, Harris SR, Tonkin-Hill G, Gladstone RA, Lo SW et al. Fast and flexible bacterial genomic epidemiology with PopPUNK. Genome Res 2019; 29:304–316 [View Article][PubMed]
    [Google Scholar]
  112. Konstantinidis KT, Ramette A, Tiedje JM. The bacterial species definition in the genomic era. Philos Trans R Soc Lond B Biol Sci 2006; 361:1929–1940 [View Article][PubMed]
    [Google Scholar]
  113. Fox GE, Wisotzkey JD, Jurtshuk P. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 1992; 42:166–170 [View Article][PubMed]
    [Google Scholar]
  114. Kim M, Oh H-S, Park S-C, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article]
    [Google Scholar]
  115. Stackebrandt E. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 2006; 6:152–155
    [Google Scholar]
  116. Costechareyre D, Bertolla F, Nesme X. Homologous recombination in Agrobacterium: potential implications for the genomic species concept in bacteria. Mol Biol Evol 2009; 26:167–176 [View Article][PubMed]
    [Google Scholar]
  117. Kumar N, Lad G, Giuntini E, Kaye ME, Udomwong P et al. Bacterial genospecies that are not ecologically coherent: population genomics of Rhizobium leguminosarum . Open Biol 2015; 5:140133 [View Article][PubMed]
    [Google Scholar]
  118. Yang Z, Rannala B. Molecular phylogenetics: principles and practice. Nat Rev Genet 2012; 13:303–314 [View Article]
    [Google Scholar]
  119. Zhou X, Shen XX, Hittinger CT, Rokas A. Evaluating fast maximum likelihood-based phylogenetic programs using empirical phylogenomic data sets. Mol Biol Evol 2018; 35:486–503 [View Article][PubMed]
    [Google Scholar]
  120. Felsenstein J. Inferring Phylogenies vol. 2 Sunderland, MA: Sinauer Associates; 2004
    [Google Scholar]
  121. Bruno WJ, Halpern AL. Topological bias and inconsistency of maximum likelihood using wrong models. Mol Biol Evol 1999; 16:564–566 [View Article]
    [Google Scholar]
  122. Buckley TR, Cunningham CW. The effects of nucleotide substitution model assumptions on estimates of nonparametric bootstrap support. Mol Biol Evol 2002; 19:394–405 [View Article][PubMed]
    [Google Scholar]
  123. Kelsey CR, Crandall KA, Voevodin AF. Different models different trees: the geographic origin of PTLV-I. Mol Phylogenet Evol 1999; 13:336–347
    [Google Scholar]
  124. Posada D, Buckley TR. Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. Syst Biol 2004; 53:793–808 [View Article][PubMed]
    [Google Scholar]
  125. Posada D. jModelTest: phylogenetic model averaging. Mol Biol Evol 2008; 25:1253–1256 [View Article][PubMed]
    [Google Scholar]
  126. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  127. Parks MB, Wickett NJ, Alverson AJ. Signal, uncertainty, and conflict in phylogenomic data for a diverse lineage of microbial eukaryotes (diatoms, bacillariophyta). Mol Biol Evol 2018; 35:80–93 [View Article][PubMed]
    [Google Scholar]
  128. Shen XX, Hittinger CT, Rokas A. Contentious relationships in phylogenomic studies can be driven by a handful of genes. Nat Ecol Evol 2017; 1:0126 [View Article][PubMed]
    [Google Scholar]
  129. Kumar S, Filipski AJ, Battistuzzi FU, Kosakovsky Pond SL, Tamura K. Statistics and truth in phylogenomics. Mol Biol Evol 2012; 29:457–472 [View Article][PubMed]
    [Google Scholar]
  130. Degnan JH, Rosenberg NA. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol Evol 2009; 24:332–340 [View Article][PubMed]
    [Google Scholar]
  131. Kubatko LS, Degnan JH. Inconsistency of phylogenetic estimates from concatenated data under coalescence. Syst Biol 2007; 56:17–24 [View Article][PubMed]
    [Google Scholar]
  132. Wu M, Eisen JA. A simple, fast, and accurate method of phylogenomic inference. Genome Biol 2008; 9:R151 [View Article][PubMed]
    [Google Scholar]
  133. Sutcliffe IC. Challenging the anthropocentric emphasis on phenotypic testing in prokaryotic species descriptions: rip it up and start again. Front Genet 2015; 6:218 [View Article][PubMed]
    [Google Scholar]
  134. Ziegler D, Pothier JF, Ardley J, Fossou RK, Pflüger V et al. Ribosomal protein biomarkers provide root nodule bacterial identification by MALDI-TOF MS. Appl Microbiol Biotechnol 2015; 99:5547–5562 [View Article]
    [Google Scholar]
  135. Rahi P, Prakash O, Shouche YS. Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (maldi-tof ms) based microbial identifications: challenges and scopes for microbial ecologists. Front Microbiol 2016; 7:1359 [View Article][PubMed]
    [Google Scholar]
  136. Lassalle F, Planel R, Penel S, Chapulliot D, Barbe V et al. Ancestral genome estimation reveals the history of ecological diversification in Agrobacterium . Genome Biol Evol 2017; 9:3413–3431 [View Article][PubMed]
    [Google Scholar]
  137. Lassalle F, Campillo T, Vial L, Baude J, Costechareyre D et al. Genomic species are ecological species as revealed by comparative genomics in Agrobacterium tumefaciens . Genome Biol Evol 2011; 3:762–781 [View Article][PubMed]
    [Google Scholar]
  138. Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol 2014; 196:2210–2215 [View Article][PubMed]
    [Google Scholar]
  139. Chun J, Grim CJ, Hasan NA, Lee JH, Choi SY et al. Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae . Proc Natl Acad Sci USA 2009; 106:15442–15447 [View Article][PubMed]
    [Google Scholar]
  140. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017; 11:2399–2406 [View Article]
    [Google Scholar]
  141. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 2018; 36:996–1004
    [Google Scholar]
  142. Harrison PW, Lower RPJ, Kim NKD, Young JPW. Introducing the bacterial 'chromid': not a chromosome, not a plasmid. Trends Microbiol 2010; 18:141–148 [View Article][PubMed]
    [Google Scholar]
  143. Howieson JG, Dilworth MJ. Working with Rhizobia Canberra: Australian Centre for International Agricultural Research; 2016 https://www.aciar.gov.au/node/12651
    [Google Scholar]
  144. Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E et al. Legumes symbioses: absence of nod genes in photosynthetic bradyrhizobia. Science 2007; 316:1307–1312 [View Article][PubMed]
    [Google Scholar]
  145. Aserse AA, Woyke T, Kyrpides NC, Whitman WB, Lindström K. Draft genome sequences of Bradyrhizobium shewense sp. nov. ERR11T and Bradyrhizobium yuanmingense CCBAU 10071T . Stand Genomic Sci 2017; 12:74 [View Article][PubMed]
    [Google Scholar]
  146. Rogel MA, Ormeño-Orrillo E, Martinez Romero E. Symbiovars in rhizobia reflect bacterial adaptation to legumes. Syst Appl Microbiol 2011; 34:96–104 [View Article][PubMed]
    [Google Scholar]
  147. Ramírez-Bahena MH, Nesme X, Muller D. Rapid and simultaneous detection of linear chromosome and large plasmids in Proteobacteria. J Basic Microbiol 2012; 52:736–739 [View Article][PubMed]
    [Google Scholar]
  148. Whitman WB. Genome sequences as the type material for taxonomic descriptions of prokaryotes. Syst Appl Microbiol 2015; 38:217–222 [View Article][PubMed]
    [Google Scholar]
  149. Thompson CC, Amaral GR, Campeão M, Edwards RA, Polz MF et al. Microbial taxonomy in the post-genomic era: rebuilding from scratch?. Arch Microbiol 2015; 197:359–370 [View Article][PubMed]
    [Google Scholar]
  150. Konstantinidis KT, Stackebrandt E. Definingtaxonomic ranks. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F et al. (editors) The Prokaryotes Springer Berlin, Heidelberg; 2013 pp. 229–254
    [Google Scholar]
  151. Whitman WB. The need for change: embracing the genome. Methods in Microbiology Elsevier; 2014 pp. 1–12
    [Google Scholar]
  152. Zahradník J, Nunvar J, Pařízková H, Kolářová L, Palyzová A et al. Agrobacterium bohemicum sp. nov. isolated from poppy seed wastes in central Bohemia. Syst Appl Microbiol 2018; 41:184–190 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003426
Loading

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error