1887

Abstract

An aerobic, non-motile, Gram-stain-negative, red-to-pinkish and rod-shaped bacterium, designated 9PBR-2, was isolated from an abandoned lead–zinc ore sample collected from Meizhou, Guangdong Province, PR China. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain 9PBR-2 belongs to the genus Hymenobacte r and was most closely related to Hymenobacter rigui KCTC 12533 (98.0 %), Hymenobacter swuensis KCTC 32018 (97.8 %) and Hymenobacter perfusus LMG 26000 (97.6 %). The calculated average nucleotide identity values based on whole genome sequences between strain 9PBR-2 and closely related type strains ranged from 81.3 to 84.1 %. Correspondingly, the digital DNA-DNA hybridization values ranged from 25.5 to 28.1 %. The major fatty acids of strain 9PBR-2 were iso-C15:0, anteiso-C15:0, C16:1 ω5c, summed feature 3 (C16:1 ω6c and/or C16:1 ω7c) and summed feature 4 (iso-C17:1 I and/or anteiso-C17:1 B). It contained menaquinone 7 (MK-7) as the major isoprenoid quinone and phosphatidylethanolamine as the major polar lipid. The genomic DNA G+C content based on whole genome sequence was 59.8 mol%. Characterization based on phylogenetic, chemotaxonomic and phenotypic analyses clearly indicated that strain 9PBR-2 represents a novel species of the genus Hymenobacter , for which the name Hymenobacter metallilatus sp. nov. is proposed. The type strain is 9PBR-2 (=GDMCC 1.1492=JCM 32699).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003450
2019-05-23
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/7/2142.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003450&mimeType=html&fmt=ahah

References

  1. Hirsch P, Ludwig W, Hethke C, Sittig M, Hoffmann B et al. Hymenobacter roseosalivarius gen. nov., sp. nov. from continental Antartica soils and sandstone: bacteria of the Cytophaga/Flavobacterium/Bacteroides line of phylogenetic descent. Syst Appl Microbiol 1998; 21:374–383 [View Article][PubMed]
    [Google Scholar]
  2. Ohn JE, Ten LN, Kim BO, Cho YJ, Jung HY. Hymenobacter rufus sp. nov., a bacterium isolated from soil. Int J Syst Evol Microbiol 2018; 68:2983–2989 [View Article][PubMed]
    [Google Scholar]
  3. Chen H, Han L, Feng Q, Fan Q, Lv J. Hymenobacter bucti sp. nov., isolated from subsurface sandstone sediment. Int J Syst Evol Microbiol 2018; 68:2749–2754 [View Article][PubMed]
    [Google Scholar]
  4. Kang H, Kim H, Joung Y, Kim KJ, Joh K. Hymenobacter marinus sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol 2016; 66:2212–2217 [View Article][PubMed]
    [Google Scholar]
  5. Kang JY, Chun J, Choi A, Moon SH, Cho JC et al. Hymenobacter koreensis sp. nov. and Hymenobacter saemangeumensis sp. nov., isolated from estuarine water. Int J Syst Evol Microbiol 2013; 63:4568–4573 [View Article][PubMed]
    [Google Scholar]
  6. Feng GD, Yang SZ, Wang YH, Zhao GZ, Deng MR et al. Sphingomonas gimensis sp. nov., a novel Gram-negative bacterium isolated from abandoned lead-zinc ore mine. Antonie van Leeuwenhoek 2014; 105:1091–1097 [View Article][PubMed]
    [Google Scholar]
  7. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  8. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  9. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  10. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  11. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  12. Rzhetsky A, Nei M. A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  13. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  14. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  15. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  16. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  17. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982; 44:992–993[PubMed]
    [Google Scholar]
  18. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: ASM Press; 2007 pp. 330–393
    [Google Scholar]
  19. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  20. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  21. Collins MD. Isoprenoidquinones. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Johb Wiley & Sons Ltd; 1994 pp. 265–309
    [Google Scholar]
  22. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 2005; 102:2567–2572 [View Article][PubMed]
    [Google Scholar]
  23. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  24. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  25. Joung Y, Cho SH, Kim H, Kim SB, Joh K. Hymenobacter yonginensis sp. nov., isolated from a mesotrophic artificial lake. Int J Syst Evol Microbiol 2011; 61:1511–1514 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003450
Loading
/content/journal/ijsem/10.1099/ijsem.0.003450
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error